Elucidation of size, structure, surface plasmon resonance, and photoluminescence of Ag nanoparticles synthesized by pulsed laser ablation in distilled water and its viability as SERS substrate

Abstract

In the present work, silver nanoparticles have been synthesized as a function of laser irradiation time and incident laser fluence by focusing a second harmonic of a Q-switched Nd:YAG laser. Increase in the irradiation time from 5 to 30 min at fixed incident laser fluence of ~ 10 J/cm2 per pulse resulted in a decrease in the average size of the nanoparticles from 20 to 15 nm, respectively. The average size of the nanoparticle was further reduced to 10 nm by increasing the incident laser fluence to ~ 22 J/cm2 at fixed irradiation time of 30 min. The reduction in the size of the nanoparticles from 20 to 15 nm induced a blue shift in the plasmonic peak from 403 to 398 nm, but with further decrease in size, a reversing of the peak towards longer wavelength was observed. The structural features of the nanoparticles exhibited dependence on both the process parameters as revealed by the X-ray diffraction, selected area electron diffraction, and high-resolution transmission electron microscope images. Longer irradiation time and higher incident fluence resulted in more oxidized phases of silver nanoparticles. These nanoparticles were found to be photoluminescent, having broad emission around the plasmonic excitation wavelength. A study on the effect of the particle size and concentration of the synthesized silver nanoparticles on its viability as surface-enhanced Raman scattering substrate for a bioactive furanoflavonoid, karanjin is reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, Mat. Today 15, 16–25 (2012)

    Google Scholar 

  2. 2.

    E. Petryayeva, U.J. Krull, Anal. Chim. Acta 706, 8–24 (2011)

    Google Scholar 

  3. 3.

    P. Yang, J. Zheng, Y. Xu, Q. Zhang, L. Jiang, Adv. Mater. 28, 10508–10517 (2016)

    Google Scholar 

  4. 4.

    C. Clavero, Nat. Photonics 8, 95 (2014)

    ADS  Google Scholar 

  5. 5.

    Q. He, D. Chen, Q. Wan, M. Pi, J. Wu, P. Zhang, D. Zhang, Opt. Laser Technol. 116, 26–30 (2019)

    ADS  Google Scholar 

  6. 6.

    V. Kravets, Z. Almemar, K. Jiang, K. Culhane, R. Machado, G. Hagen, A. Kotko, I. Dmytruk, K. Spendier, A. Pinchuk, Nanoscale Res. Lett. 11, 30 (2016)

    ADS  Google Scholar 

  7. 7.

    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668–677 (2003)

    Google Scholar 

  8. 8.

    M.I. Stockman, Phys. Today 64, 39–44 (2011)

    Google Scholar 

  9. 9.

    S. Agnihotri, S. Mukherji, S. Mukherji, RSC Adv. 4, 3974–3983 (2014)

    Google Scholar 

  10. 10.

    X. Huang, H. Yu, H. Tan, J. Zhu, W. Zhang, C. Wang, J. Zhang, Y. Wang, Y. Lv, Z. Zeng, Adv. Funct. Mater. 24, 6516–6523 (2014)

    Google Scholar 

  11. 11.

    S. Bhardwaj, R. Uma, R. Sharma, Plasmonics 12, 961–969 (2017)

    Google Scholar 

  12. 12.

    I. Venditti, Materials 10, 97 (2017)

    ADS  Google Scholar 

  13. 13.

    S. Peng, J.M. McMahon, G.C. Schatz, S.K. Gray, Y. Sun, Proc. Natl. Acad. Sci. 107, 14530–14534 (2010)

    ADS  Google Scholar 

  14. 14.

    K. Kalishwaralal, S. BarathManiKanth, S.R.K. Pandian, V. Deepak, S. Gurunathan, Colloid Surf. B 79, 340–344 (2010)

    Google Scholar 

  15. 15.

    H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater. 22, 1333–1353 (2012)

    Google Scholar 

  16. 16.

    D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117, 3990–4103 (2017)

    Google Scholar 

  17. 17.

    M.H. Mahdieh, B. Fattahi, Appl. Surf. Sci. 329, 47–57 (2015)

    ADS  Google Scholar 

  18. 18.

    D. Reyes-Contreras, M. Camacho-López, M.A. Camacho-López, S. Camacho-López, R.I. Rodríguez-Beltrán, M. Mayorga-Rojas, Opt. Laser Technol. 74, 48–52 (2015)

    ADS  Google Scholar 

  19. 19.

    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027–3046 (2013)

    Google Scholar 

  20. 20.

    E. Solati, M. Mashayekh, D. Dorranian, Appl. Phys. A Mater. 112, 689–694 (2013)

    ADS  Google Scholar 

  21. 21.

    D. Dorranian, S. Tajmir, F. Khazanehfar, Soft Nanosci. Lett. 3, 93 (2013)

    Google Scholar 

  22. 22.

    C.G. Moura, R.S.F. Pereira, M. Andritschky, A.L.B. Lopes, J.P. de Freitas Grilo, R.M. do Nascimento, F.S. Silva, Opt. Laser Technol. 97, 20–28 (2017)

    ADS  Google Scholar 

  23. 23.

    R. Mahfouz, F.J. Cadete Santos Aires, A. Brenier, B. Jacquier, J.C. Bertolini, Appl. Surf. Sci. 254, 5181–5190 (2008)

    ADS  Google Scholar 

  24. 24.

    A. Neumeister, J. Jakobi, C. Rehbock, J. Moysig, S. Barcikowski, Phys. Chem. Chem. Phys. 16, 23671–23678 (2014)

    Google Scholar 

  25. 25.

    C.-Y. Li, M. Meng, S.-C. Huang, L. Li, S.-R. Huang, S. Chen, L.-Y. Meng, R. Panneerselvam, S.-J. Zhang, B. Ren, J. Am. Chem. Soc. 137, 13784–13787 (2015)

    Google Scholar 

  26. 26.

    C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, J. Biol. Inorg. Chem. 12, 527–534 (2007)

    Google Scholar 

  27. 27.

    P.K. Baruah, A.K. Sharma, A. Khare, Opt. Laser Technol. 108, 574–582 (2018)

    ADS  Google Scholar 

  28. 28.

    P.K. Baruah, A. Singh, L. Rangan, A.K. Sharma, A. Khare, Mater. Chem. Phys. 220, 111–117 (2018)

    Google Scholar 

  29. 29.

    W.S. Vismaya, J. Eipeson, P. Manjunatha, T.S. Srinivas, Kanya. Ind. Crops Prod. 32, 118–122 (2010)

    Google Scholar 

  30. 30.

    C.H. Bae, S.H. Nam, S.M. Park, Appl. Surf. Sci. 197, 628–634 (2002)

    ADS  Google Scholar 

  31. 31.

    A. Singh, I. Jahan, M. Sharma, L. Rangan, A. Khare, A.N. Panda, Structural characterization. Planta Med. Lett. 3, e91–e95 (2016)

    Google Scholar 

  32. 32.

    K.S. Singh, A.K. Sharma, J. Vac. Sci. Technol. A 35, 031305 (2017)

    Google Scholar 

  33. 33.

    P.K. Baruah, A.K. Sharma, A. Khare, AIP Conf. Proc. 1942, 050036 (2018)

    Google Scholar 

  34. 34.

    M.H. Mahdieh, B. Fattahi, Opt. Laser Technol. 75, 188–196 (2015)

    ADS  Google Scholar 

  35. 35.

    A. Takami, H. Kurita, S. Koda, J. Phys. Chem. B 103, 1226–1232 (1999)

    Google Scholar 

  36. 36.

    A.F.M.Y. Haider, S. Sengupta, K.M. Abedin, A.I. Talukder, Appl. Phys. A- Mater. 105, 487–495 (2011)

    ADS  Google Scholar 

  37. 37.

    P.V. Kamat, M. Flumiani, G.V. Hartland, J. Phys. Chem. B 102, 3123–3128 (1998)

    Google Scholar 

  38. 38.

    T. Ahmad, I.A. Wani, O.A. Al-Hartomy, A.S. Al-Shihri, A. Kalam, J. Mol. Struct. 1084, 9–15 (2015)

    ADS  Google Scholar 

  39. 39.

    U. Kreibig, C.V. Fragstein, Z Phys. 224, 307–323 (1969)

    ADS  Google Scholar 

  40. 40.

    T.S. Buys, K. de Clerk, Anal. Chem. 44, 1273–1275 (1972)

    Google Scholar 

  41. 41.

    K.P. Charlé, F. Frank, W. Schulze, Ber. Bunsen. Phys. Chem. 88, 350–354 (1984)

    Google Scholar 

  42. 42.

    S. Fedrigo, W. Harbich, J. Buttet, Phys. Rev. B 47, 10706 (1993)

    ADS  Google Scholar 

  43. 43.

    M. Baalousha, M. Sikder, A. Prasad, J. Lead, R. Merrifield, G.T. Chandler, Environ. Chem. 13, 1–3 (2016). https://doi.org/10.1071/EN15142

    Article  Google Scholar 

  44. 44.

    U. Kreibig, Z Phys. B 234, 307–318 (1970)

    Google Scholar 

  45. 45.

    S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 8410–8426 (1999)

    Google Scholar 

  46. 46.

    O.P. Siwach, P. Sen, Solid State Commun. 148, 221–225 (2008)

    ADS  Google Scholar 

  47. 47.

    O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Y. Losytskyy, A.V. Kotko, A.O. Pinchuk, Phys. Rev. B 79, 235438 (2009)

    ADS  Google Scholar 

  48. 48.

    A. Zhang, J. Zhang, Y. Fang, J. Lumin. 128, 1635–1640 (2008)

    Google Scholar 

  49. 49.

    Y. Zhao, Y. Jiang, Y. Fang, Spectrochim. Acta A 65, 1003–1006 (2006)

    ADS  Google Scholar 

  50. 50.

    E. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, J. Phys. Chem. C 111, 13794–13803 (2007)

    Google Scholar 

  51. 51.

    N.D. Israelsen, C. Hanson, E. Vargis, Sci. World J. 2015, 124582 (2015). https://doi.org/10.1155/2015/124582

    Article  Google Scholar 

  52. 52.

    M. Mahmoud, M. El-Sayed, Nano Lett. 9, 3025–3031 (2009)

    ADS  Google Scholar 

  53. 53.

    S. Hong, X. Li, J. Nanomater 2013, 49 (2013)

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Central Instruments Facility (CIF), IIT Guwahati for the TEM, PL, and micro-Raman facility. The XRD facility in the Department of Physics, IIT Guwahati and Department of Science and Technology (India), Project No. SR/S2/HEP-18/2009 is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prahlad K. Baruah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baruah, P.K., Singh, A., Rangan, L. et al. Elucidation of size, structure, surface plasmon resonance, and photoluminescence of Ag nanoparticles synthesized by pulsed laser ablation in distilled water and its viability as SERS substrate. Appl. Phys. A 126, 195 (2020). https://doi.org/10.1007/s00339-020-3375-1

Download citation

Keywords

  • Pulsed laser ablation
  • Nanoparticles
  • Surface plasmon resonance
  • Photoluminescence
  • Surface-enhanced Raman scattering
  • Furanoflavonoid