Skip to main content
Log in

Asymmetric diffraction mechanism induced by inclined all-dielectric nanostructure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

3D asymmetric structure could induce asymmetric diffraction with spatial coupling behavior for various optical applications, but the study still faces challenges due to the complicated local-field coupling mechanism within structures. In this study, the spatial asymmetry based on inclined all-dielectric structure was theoretically modeled. The normal reflection of the 2D array shows that the increasing structural inclination selectively enhances the Fano resonance between different polarization directions which is mainly due to the oriented spatial coupling effect by increasing structural asymmetry, proved with the near-field distribution. The angular-resolved reflection shows the selected enhancement of first-order diffraction even over that of zero order by combining the structural asymmetry and oblique incidence. Our study provides a new insight for exploring asymmetric photonic structures and relative devices in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. England, M. Kolle, P. Kim, K. Khan, P. Munoz, E. Mazur, J. Aizenberg, P. Natl. Acad. Sci. 111, 44 (2014)

    Article  Google Scholar 

  2. J.P. Vigneron, P. Simonis, A. Aiello, A. Bay, D. Windsor, J.F. Colomer, M. Rassart, Phys. Rev. E. 82, 2 (2010)

    Article  Google Scholar 

  3. V.S. Asadchy, A. Wickberg, A. Díaz-Rubio, M. Wegener, ACS Photonics. 4, 5 (2017)

    Article  Google Scholar 

  4. S. Gao, S.S. Lee, E.S. Kim, D.K. Choi, Nanoscale. 10, 26 (2018)

    Google Scholar 

  5. Z.Y. Li, E. Palacios, S. Butun, K. Aydin, Nano Lett. 15, 3 (2015)

    Google Scholar 

  6. P. Moitra, B.A. Slovick, Z.G. Yu, S. Krishnamurthy, J. Valentine, Appl. Phys. Lett. 104, 17 (2014)

    Article  Google Scholar 

  7. M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Science 352, 6290 (2016)

    Article  Google Scholar 

  8. M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, Adv. Opt. Mater. 3, 6 (2015)

    Article  Google Scholar 

  9. K.B. Crozier, M. Khorasaninejad, Nat. Commun. 5, 5386 (2014)

    Article  ADS  Google Scholar 

  10. J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, P. Van Dorpe, Nano Lett. 16, 7 (2016)

    Google Scholar 

  11. M.N.M.N. Perera, D. Schmidt, W.E.K. Gibbs, S. Juodkazis, P.R. Stoddart, Opt. Lett. 41, 5495 (2016)

    Article  ADS  Google Scholar 

  12. O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, R. Quidant, Nano Lett. 17, 7 (2017)

    Article  Google Scholar 

  13. L. Shi, T.U. Tuzer, R. Fenollosa, F. Meseguer, Adv. Mater. 24, 44 (2012)

    Google Scholar 

  14. S. Han, L. Cong, Y.K. Srivastava, B. Qiang, M.V. Rybin, A. Kumar, R. Jain, W.X. Lim, V.G. Achanta, S.S. Prabhu, Q.J. Wang, Adv. Mater. 31, 37 (2019)

    Google Scholar 

  15. Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mater. Today 12, 12 (2009)

    Article  Google Scholar 

  16. D. Sell, J. Yang, E. Wang, T. Phan, S. Doshay, J.A. Fan, ACS Photonics. 5, 6 (2018)

    Article  Google Scholar 

  17. L. Yang, D. Wu, Y. Liu, C. Liu, Z. Xu, H. Li, Z. Yu, L. Yu, H. Ye, Photonics Res. 6, 6 (2018)

    Article  Google Scholar 

  18. S. Gupta, J. Opt. Soc. Am. A 33, 8 (2016)

    Article  Google Scholar 

  19. M. Naseer, A.D. Khan, Plasmonics. 10, 1687 (2015)

    Article  Google Scholar 

  20. N.L. Tsitsas, C.A. Valagiannopoulos, J. Opt. Soc. Am. B. 34, 7 (2017)

    Article  Google Scholar 

  21. M.D. Perry, R.D. Boyd, J.A. Britten, D. Decker, B.W. Shore, C. Shannon, E. Shults, Opt. Lett. 20, 8 (1995)

    Google Scholar 

  22. Z. Wang, B. Luk’yanchuk, L. Yue, B. Yan, J. Monks, R. Dhama, O.V. Minin IV, S.Huang Minin, A.A. Fedyanin, Sci. Rep. 9, 20293 (2019)

    Article  ADS  Google Scholar 

  23. H.K. Shamkhi, K.V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P.D. Terekhov, P. Belov, A. Karabchevsky, A.B. Evlyukhin, Y. Kivshar, A.S. Shalin, Phys. Rev. Lett. 122, 193905 (2019)

    Article  ADS  Google Scholar 

  24. E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y.F. Yu, Y.H. Fu, V. Valuckas, S.L.K. Yap, Y.T. Toh, J.S.K. Ng, A.I. Kuznetsov, Nano Lett. 17, 6267 (2017)

    Article  ADS  Google Scholar 

  25. B. Liang, M. Bai, H. Ma, N. Ou, J. Miao, IEEE Trans. Antennas Propag. 62, 354 (2014)

    Article  ADS  Google Scholar 

  26. J. Zhang, B. Shokouhi, B. Cui, J. Vac. Sci. Technol. B 30, 06F302 (2012)

    Article  Google Scholar 

  27. B. Gallinet, O.J.F. Martin, Opt. Express 19, 22167 (2011)

    Article  ADS  Google Scholar 

  28. Z. Li, J.M. Klopf, L. Wang, K. Yang, R.A. Lukaszew, Sci. Rep. 7, 44335 (2017)

    Article  ADS  Google Scholar 

  29. F. Monticone, A. Alù, New J. Phys. 19, 093011 (2017)

    Article  ADS  Google Scholar 

  30. B.C.P. Sturmberg, K.B. Dossou, L.C. Botten, R.C. McPhedran, C.M. Sterke, Opt. Express 23, A1672 (2015)

    Article  Google Scholar 

  31. N. Nguyen-Huu, M. Cada, Y. Ma, F. Che, J. Pistora, K. Yasumoto, Y. Ma, J. Lin, H. Maeda, J. Phys. D Appl. Phys. 50, 205105 (2017)

    Article  ADS  Google Scholar 

  32. T. Huang, S. Zeng, X. Zhao, Z. Cheng, P.P. Shum, Photonics. 5, 23 (2018)

    Article  Google Scholar 

  33. D. Maystre, Theory of Wood’s Anomalies (Springer, Berlin, 2012), pp. 39–83

    Google Scholar 

  34. B. Lukyanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  35. G.F. Walsh, L.D. Negro, Nano Lett. 13, 3111 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Xin Hu (Hangzhou Dianzi University) for the help of theoretic calculation. The work is supported by the Institute of Advanced Magnetic Materials, and the College of Materials and Environmental Engineering, Hangzhou Dianzi University. The authors gratefully acknowledge National Natural Science Foundation of China (U1704253), and (51471045); Zhejiang Provincial Foundation for Distinguished Young Scholars (LR18E010001); Zhejiang Provincial Key Research and Development Program (2019C01121); Natural Science Foundation of Jiangsu Province (No. BK20170429); the Starting Research Fund from Hangzhou Dianzi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Tu, R., Huang, C. et al. Asymmetric diffraction mechanism induced by inclined all-dielectric nanostructure. Appl. Phys. A 126, 185 (2020). https://doi.org/10.1007/s00339-020-3367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3367-1

Keywords

Navigation