Skip to main content
Log in

Investigation of the physical properties of the equiatomic quaternary Heusler alloy CoYCrZ (Z = Si and Ge): a DFT study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this manuscript, we investigate the physical properties such as the magnetic and the electronic properties of the Co-based equiatomic quaternary Heusler alloy CoYCrZ (Z = Si and Ge). These investigations have been performed by employing the Quantum Espresso code in the framework of density functional theory (DFT). The generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) is used for all these calculations. The band structures, and density of states calculations, show that all these materials CoYCrZ (Z = Si and Ge) exhibit a half-metallic (HM) behavior only for the structure type II. Moreover, this structure type II is found to be the most stable configuration for all these alloys. On the other hand, it has been found that the Slater–Pauling is well described for the compound CoYCrGe, only for the configuration type II. In particular, the equiatomic quaternary Heusler alloys CoYCrSi and CoYCrGe are found to be half-metallic for the structure type II. This is due to the fact that they have 100% spin polarization SP. Also, the existence of complete SP in the studied alloys is the reason for which these materials are useful for spintronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. I. Zutic, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  2. F. Heusler, W. Starck, E. Haupt, Magnetisch-chemische Studien. Verh. Dtsch. Phys. Ges. 5, 219 (1903)

    Google Scholar 

  3. D.P. Rai, A. Shankar Sandeep, M.P. Ghimire, R. Khenata, R.K. Thapa, Study of the enhanced electronic and thermoelectric (TE) properties of ZrxHf1−x−yTayNiSn: a first principles study. RSC Adv. 5, 95353 (2015)

    Article  Google Scholar 

  4. I. Galanakis, P. Dederichs, Half-metallic alloys (lecture notes in physics), vol. 676 (2005)

  5. J. Enkovaara, A. Ayuela, A. Zayak, P. Entel, L. Nordström, M. Dube, J. Jalkanen, J. Impola, R. Nieminen, Mater. Sci. Eng. 378, 60 (2004)

    Article  Google Scholar 

  6. R.A. De Groot, F.M. Mueller, P.G. Van Engen, K.H.J. Buschow, New class of ma-terials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

    Article  ADS  Google Scholar 

  7. H. Luo, G. Liu, F. Meng, S. Li, W. Zhu, G. Wu, X. Zhu, C. Jiang, Electronic structure and magnetism of the Heusler alloy Mn2NiAl: a theoretical study of the shape–memory behavior. Phys. B Condens. Matter 405, 3092–3095 (2010). https://doi.org/10.1016/j.physb.2010.04.022

    Article  ADS  Google Scholar 

  8. O. Meshcheriakova, S. Chadov, A.K. Nayak, U.K. Rößler, J. Kübler, G. André, A. Tsirlin, J. Kiss, S. Hausdorf, A. Kalache, W. Schnelle, M. Nicklas, C. Felser, Noncollinearity and spin reorientation in the novel Mn2RhSn Heusler magnet. Phys. Rev. Lett. 113, 087203 (2014)

    Article  ADS  Google Scholar 

  9. K. Ramesh Kumar, N. Harish Kumar, G. Markandeyulu, J.A. Chelvane, V. Neu, P.D. Babu, Structural, magnetic and transport properties of half-metallic ferri-magnet Mn2Vga. J. Magn. Magn. Mater. 320, 2737–2740 (2008). https://doi.org/10.1016/j.jmmm.2008.06.003

    Article  ADS  Google Scholar 

  10. D. Rani, K.G. Suresh, A.K. Yadav, S.N. Jha, D. Bhattacharyya, M.R. Varma, A. Alam, Phys. Rev. B 96, 184404 (2017)

    Article  ADS  Google Scholar 

  11. J.F. Gregg, R.P. Borges, E. Jouguelet, C.L. Dennis, I. Petej, S.M. Thompson, K. Ounadjela, J. Magn. Magn. Mater. 265, 274 (2003)

    Article  ADS  Google Scholar 

  12. J. Nehra, N. Lakshmi, K. Venugopalan, Phys. B Condens. Matter. 459, 46 (2015)

    Article  ADS  Google Scholar 

  13. W. Zhang, T. Yu, Z. Huang, W. Zhang, J. Alloys Compd. 618, 78 (2015)

    Article  Google Scholar 

  14. R. Paudel, J. Zhu, J. Super. Nov. Magn. 1, 1 (2017)

    Google Scholar 

  15. Y.V. Kudryavtsev, N.V. Uvarov, V.N. Iermolenko, I.N. Glavatskyy, J. Dubowik, Acta. Mater. 60, 4780 (2012)

    Article  Google Scholar 

  16. T. Zhou, Y. Feng, X. Chen, H. Yuan, H. Chen, J. Magn. Magn. Mater. 423, 306 (2017)

    Article  ADS  Google Scholar 

  17. W.E. Pickett, J.S. Moodera, Phys. Today 54, 39–44 (2001)

    Article  ADS  Google Scholar 

  18. M. Tas, E. Sasioglu, C. Friedrich, J. Magn. Magn. Mater. 441, 333–338 (2017)

    Article  ADS  Google Scholar 

  19. T.M. Bhat, D.C. Gupta, RSC Adv. 6, 80302–80309 (2016)

    Article  Google Scholar 

  20. L. Bainsla, K.G. Suresh, Appl. Phys. Rev. 3, 031101 (2016)

    Article  ADS  Google Scholar 

  21. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002)

    Article  ADS  Google Scholar 

  22. S. Shirotori, S. Hashimoto, M. Takagishi, Y. Kamiguchi, APEX 8, 023103 (2015)

    Article  ADS  Google Scholar 

  23. E. Şaşıoğlu, L.M. Sandratskii, P. Bruno, I. Galanakis, Phys. Rev. B 72, 184415 (2005)

    Article  ADS  Google Scholar 

  24. I. Galanakis, P. Mavropoulos, P.H. Dederichs, J. Phys. D Appl. Phys. 39, 765 (2006)

    Article  ADS  Google Scholar 

  25. H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys. D Appl. Phys. 40, 1507–1523 (2007)

    Article  ADS  Google Scholar 

  26. R. Choudhary, P. Kharel, S.R. Valloppilly, Y. Jin, A. O'Connell, Y. Huh, S. Gilbert, A. Kashyap, D.J. Sellmyer, R. Skomski, AIP Adv. 6, 056304 (2016)

    Article  ADS  Google Scholar 

  27. E.Y. Venkateswara, S. Gupta, M.R. Varma, P. Singh, K.G. Suresh, A. Alam, Phys. Rev. B 92, 224413 (2015)

    Article  ADS  Google Scholar 

  28. J.T. Du, S.J. Dong, X.X. Wang, H. Rozale, H. Zhao, L.Y. Wang, L.F. Feng, Superlattice Microstruct. 105, 39–47 (2017)

    Article  ADS  Google Scholar 

  29. G. Gökoğlu, Solid State Sci. 14, 1273–1276 (2012)

    Article  ADS  Google Scholar 

  30. H. Xie, H. Wang, C. Fu, Y. Liu, G.J. Snyder, X. Zhao, T. Zhu, Sci. Rep. 4, 6888 (2014)

    Article  ADS  Google Scholar 

  31. S. Yousuf, D.C. Gupta, J. Alloy. Compd. 735, 1245–1252 (2018)

    Article  Google Scholar 

  32. L. Xiong, L. Yi, G. Gao, Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z = Al, Ga, Si, Ge, As, Sb). J. Magn. Magn. Mater. 360, 98–103 (2014)

    Article  ADS  Google Scholar 

  33. S. Berri, First-principles study on half-metallic properties of the CoMnCrSb quaternary Heusler compound. J. Supercond. Novel Magn. 29(5), 1309–1315 (2016)

    Article  Google Scholar 

  34. Y. Gao, X. Gao, The half-metallicity of LiMgPdSn-type quaternary Heusler alloys FeMnScZ (Z = Al, Ga, In): a first-principle study. AIP Adv. 5(5), 057157 (2015)

    Article  ADS  Google Scholar 

  35. Y. Zhang et al., Magnetism, band gap and stability of half-metallic property for the quaternary Heusler alloys CoFeTiZ (Z = Si, Ge, Sn). J. Alloy Compd. 616, 449–453 (2014)

    Article  Google Scholar 

  36. P. Klaer et al., Element-specific magnetic moments and spin-resolved density of states in CoFeMn Z (Z = Al, Ga; Si, Ge). Phys. Rev. B 84(14), 144413 (2011)

    Article  ADS  Google Scholar 

  37. A. Bahnes et al., Half-metallic ferromagnets behavior of a new quaternary Heusler alloys CoFeCrZ (Z = P, As and Sb): Ab-initio study. J. Alloy Compd. 731, 1208–1213 (2018)

    Article  Google Scholar 

  38. M. Benkabou et al., Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z = Al, Ga, Ge and Si) via first-principle calculations. J. Alloy Compd. 647, 276–286 (2015)

    Article  Google Scholar 

  39. S. Bahramian, F. Ahmadian, Half-metallicity and magnetism of quaternary Heusler compounds CoRuTiZ (Z = Si, Ge, and Sn). J. Magn. Magn. Mater. 424, 122–129 (2017)

    Article  ADS  Google Scholar 

  40. M. Khodami, F. Ahmadian, First-principles study of magnetism and half-metallic properties for the quaternary Heusler alloys CoMnTiZ (Z = P, As, and Sb). J. Supercond. Novel Magn. 28(10), 3027–3035 (2015)

    Article  Google Scholar 

  41. M. Elahmar et al., Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z = Si, As, Sb): a first-principle study. J. Magn. Magn. Mater. 393, 165–174 (2015)

    Article  ADS  Google Scholar 

  42. K. Benkaddour et al., First-principles study of structural, elastic, thermodynamic, electronic and magnetic properties for the quaternary Heusler alloys CoRuFeZ (Z = Si, Ge, Sn). J. Alloy Compd. 687, 211–220 (2016)

    Article  Google Scholar 

  43. A.R. Chandra et al., Electronic structure properties of new equiatomic CoCuMnZ (Z = In, Sn, Sb) quaternary Heusler alloys: an ab-initio study. J. Alloy Compd. 748, 298–304 (2018)

    Article  Google Scholar 

  44. D. Rani et al., Structural, electronic, magnetic, and transport properties of the equiatomic quaternary Heusler alloy CoRhMnGe: theory and experiment. Phys. Rev. B 96(18), 184404 (2017)

    Article  ADS  Google Scholar 

  45. G. Forozani, A.A.M. Abadi, S.M. Baizaee, A. Gharaati, Structural, electronic and magnetic properties of CoZrIrSi quaternary Heusler alloy: first-principles study. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.152449

    Article  Google Scholar 

  46. S. Idrissi, S. Ziti, H. Labrim, R. Khalladi, S. Mtougui, N. El Mekkaoui, I. El Housni, L. Bahmad, Magnetic properties of the Heusler compound CoFeMnSi: Monte Carlo simulations. Physi. A 527, 121406 (2019). https://doi.org/10.1016/j.physa.(2019).121406

    Article  Google Scholar 

  47. B. Lakhan, R. Yilgin, J. Okabayashi, A. Ono, K. Suzuki, S. Mizukami, Phys. Rev. B 96, 094404 (2017)

    Article  ADS  Google Scholar 

  48. P. Giannouzzi et al., J. Phys. Condens. Matter 21, 395502 (2009). https://www.Quantum-espresso.org

  49. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

    Article  ADS  Google Scholar 

  50. J. Perdew, K. Burke, M. Ernzerhof, Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80(4), 891 (1998)

    Article  ADS  Google Scholar 

  51. M.I. Khan, H. Arshad, M. Rizwan, S.S.A. Gillani, M. Zafar, S. Ahmed, M. Shakil, Investigation of structural, electronic, magnetic and mechanical properties of a new series of equiatomic quaternary Heusler alloys CoYCrZ (Z = Si, Ge, Ga, Al): a DFT study. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.152964

    Article  Google Scholar 

  52. S. Idrissi, S. Ziti, H. Labrim, L. Bahmad, I. El Housni, R. Khalladi, S. Mtougui, N. El Mekkaoui, Half-metallic behavior and magnetic proprieties of the quaternary Heusler alloys YFeCrZ (Z = Al Sb and Sn). J Alloys Compd (2019). https://doi.org/10.1016/j.jallcom.2019.153373

    Article  Google Scholar 

  53. Q. Gao, H.-H. Xie, L. Li, G. Lei, K. Wang, J.-B. Deng, X.-R. Hu, Ab intito study on some new spin-gapless semiconductors: the Zr-based quanternary Heusler alloys. Superlattices Microstruct. 85, 536–542 (2015)

    Article  ADS  Google Scholar 

  54. L. Bainsla, A.I. Mallick, M.M. Raja, A.K. Nigam, BSDChS Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh, K. Hono, Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy. Phys. Rev. B 91, 104408 (2015)

    Article  ADS  Google Scholar 

  55. M.N. Rasool et al., Investigation of structural, electronic and magnetic properties of 1:1:1:1 stoichiometric quaternary Heusler alloys YCoCrZ (Z = Si, Ge, Ga, Al): An abinitio study. J. Magn. Magn. Mater. 395, 97–108 (2015)

    Article  ADS  Google Scholar 

  56. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  Google Scholar 

  57. N. Karimian, F. Ahmadian, Electronic structure and half-metallicity of new quaternary Heusler alloys NiFeTiZ (Z = Si, P, Ge, and As). Solid State Commun. 223, 60–66 (2015)

    Article  ADS  Google Scholar 

  58. K. Özdoğan, E. Şaşıoğlu, I. Galanakis, Slater–Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: half-metallicity, spin-gapless and magnetic semiconductors. J. Appl. Phys. 113(19), 193903 (2013)

    Article  ADS  Google Scholar 

  59. S. Skaftouros, K. Ozdoğan, E. Şaşıoglu, I. Galanakis, Phys. Rev. B. 87, 024420 (2013)

    Article  ADS  Google Scholar 

  60. L. Boumia, F. Dahmane, B. Doumi, D.P. Rai, A. Shakeel, H. Khandy, H. Khachai, A.H. Meradji, Chinese. J. Phys. 59, 281 (2019)

    Google Scholar 

  61. N. Xing et al., First-principle prediction of half-metallic properties for the Heusler alloys V2YSb (Y=Cr, Mn, Fe, Co). Comput. Mater. Sci. 45(2), 489–493 (2009)

    Article  Google Scholar 

  62. D. Rai et al., A comparative study of a Heusler alloy Co2FeGe using LSDA and LSDA+U. Phys. B 407(18), 3689–3693 (2012)

    Article  ADS  Google Scholar 

  63. K. Seema, M. Kaur, R. Kumar, First principles study of Fe based full Heusler alloy. J. Integr. Sci. Technol. 1(1), 41–43 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Idrissi or L. Bahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrissi, S., Labrim, H., Ziti, S. et al. Investigation of the physical properties of the equiatomic quaternary Heusler alloy CoYCrZ (Z = Si and Ge): a DFT study . Appl. Phys. A 126, 190 (2020). https://doi.org/10.1007/s00339-020-3354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3354-6

Keywords

Navigation