Skip to main content
Log in

Source pocket engineered underlap stacked-oxide cylindrical gate tunnel FETs with improved performance: design and analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of stacked SiO2/HfO2 gate oxide, source pocket, and underlap gate engineering on the electrical and RF performances of cylindrical gate tunnel field-effect transistors (CGTFETs) have been investigated in this paper. While source pocket with underlap engineering reduces both the gate leakage current and subthreshold swing (SS), the stacked gate oxide improves the drain current of the CGTFET. The DC and RF performance parameters such as the electric field, drain current, transconductance, gate capacitance, unity gain cut-off frequency, gain–bandwidth product, transconductance frequency product, and intrinsic delay have been investigated for different stacked oxide CGTFETs with and without a source pocket as well as with and without an underlap structure. Our study demonstrates that the proposed underlapped stacked-oxide source-pocket engineered CGTFET structure not only enhances the drain current, but also improves the subthreshold switching characteristics of the device by reducing SS and gate leakage current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.Y. Choi, B.-G. Park, J.D. Lee, T.-J.K. Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  ADS  Google Scholar 

  2. S. Chander, B. Bhowmick, S. Baishya, Heterojunction fully depleted SOI-TFET with oxide/source overlap. Superlattices Microstruct. 86, 43–50 (2015)

    Article  ADS  Google Scholar 

  3. S. Chander, S. Bhaishya, S.K. Sinha, S. Kumar, P.K. Singh, K. Baral, M.R. Tripathy, A.K. Singh, S. Jit, Two-dimensional analytical modeling for electrical characteristics of Ge/Si SOI-tunnel FinFETs. Superlattices Microstruct. 131, 30–39 (2019)

    Article  ADS  Google Scholar 

  4. K. Xu, Y. Lu, K. Takei, Multifunctional skin-inspiredflexible sensor systems forwearable electronics. Adv. Mater. Technol. 4, 1800628–1800652 (2019)

    Article  Google Scholar 

  5. V. Nagavarapu, R. Jhaveri, J.C.S. Woo, The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 55(4), 1013–1019 (2008)

    Article  ADS  Google Scholar 

  6. S. Kumar, E. Goel, K. Singh, B. Singh, M. Kumar, A compact 2-D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-k stacked gate-oxide structure. IEEE Trans. Electron Devices 63(8), 3291–3299 (2016)

    Article  ADS  Google Scholar 

  7. A.S. Verhulst, B. Sore, D. Lionelli, G.W. Vanderverghe, G. Grosenken, Modeling the single-gate, double-gate, and gate-all-around tunnel field effect transistors. J. Appl. phys. 107(2), 024518–024523 (2010)

    Article  ADS  Google Scholar 

  8. P.K. Singh, K. Baral, S. Kumar, S. Chander, S. Jit, Analytical drain current model of stacked oxide SiO2/HfO2 cylindrical gate tunnel FETs with oxide interface charge. Indian J. Phys. 93(6), 1–9 (2019)

    Google Scholar 

  9. A.K. Singh, M.R. Tripathy, S. Chander, K. Baral, P.K. Singh, S. Jit, Simulation study and comparative analysis of some TFE structures with a novel partial-ground-plane (PGP) based TFET on SELBOX structure. Silicon 12, 1–10 (2019)

    Article  Google Scholar 

  10. S. Kumar, K. Singh, S. Chander, E. Goel, P.K. Singh, K. Baral, S. Jit. 2-D analytical drain current model of double-gate heterojunction TFETs with a SiO2/HfO2 stacked gate oxide structure. IEEE Trans. Electron Devices. 65(1), 331–338 (2018)

  11. S. Kumar, E. Goel, K. Singh, B. Singh, P.K. Singh, K. Baral, S. Jit, 2-D analytical modeling of the electrical characteristics of dual-material double-gate TFETs with a SiO2/HfO2 stacked gate-oxide structure. IEEE Trans. Electron Devices 64(3), 960–968 (2017)

    Article  ADS  Google Scholar 

  12. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  ADS  Google Scholar 

  13. S. Dash, A.S. Lenka, B. Jena, G.P. Mishra. Impact of source pocket doping on RF and linearity performance of a cylindrical gate tunnel FET. Int. J. Numer. Model Electron Netw. Devices Fields 31, 1–14 (2017)

  14. N. Jain, E. Tutuc, S.K. Banerjee, L.F. Register. Performance analysis of germanium nanowire tunneling field effect transistors, in Device Research Conference (IEEE, Santa Barbara, CA, 2008), pp. 99–100. https://doi.org/10.1109/DRC.2008.4800753

  15. A. Chattopadhyay, A. Mallik, Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel field-effect transistor. IEEE Trans. Electron Devices 58(3), 677–683 (2011)

    Article  ADS  Google Scholar 

  16. J. Madan, R. Chaujar, Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance. Superlattices Microstruct. 102, 17–26 (2017)

    Article  ADS  Google Scholar 

  17. ATLAS User’s Manual (Silvaco INC., Santa Clara, 2013)

  18. W. Xu, H. Wong, H. Iwai, Analytical model of drain current of cylindrical surrounding gate p-n-i-n TFET. Solid-State Electron 111, 171–179 (2015)

    Article  ADS  Google Scholar 

  19. Z.X. Chen et al., Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires. IEEE Electron Device Lett. 30(7), 754–756 (2009)

    Article  ADS  Google Scholar 

  20. A.L. Vallett, S. Minassian, P. Kaszuba, S. Datta, J.M. Redwing, T.S. Mayer. Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors. Nano Lett. 10, 4813–4818 (2010)

  21. R. Gandhi, Z. Chen, N. Singh, K. Banerjee, S. Lee, Vertical Sinanowire-type tunneling FETs with low subthreshold swing at room temperature. IEEE Electron Device Lett. 32(4), 437–439 (2011)

    Article  ADS  Google Scholar 

  22. R. Rooyackers et al. A new complementary hetero-junction vertical tunnel-FET integration scheme, in 2013 IEEE International Electron Devices Meeting (IEEE, Washington, DC, 2013), pp. 4.2.1–4.2.4. https://doi.org/10.1109/IEDM.2013.6724558

  23. G.F. Jiao, H.Y. Yu, X.Y. Huang, Z.X. Chen, D.M. Huang, N. Singh, G.Q. Lo, D.L. Kwong, M.-F. Li. New degradation mechanisms and reliability performance in tunneling field effect transistors, in 2009 IEEE International Electron Devices Meeting (IEDM) (IEEE, Baltimore, MD, 2009), pp. 741–744. https://doi.org/10.1109/IEDM.2009.5424234

  24. G.F. Jiao, Z.X. Chen, H.Y. Yu, X.Y. Huang, D.M. Huang, N. Singh, G.Q. Lo, D.-L. Kwong, M.-F. Li, Experimental studies of reliability issues in tunneling field-effect transistors. IEEE Electron Device Lett. 31(5), 396–398 (2010)

    Article  ADS  Google Scholar 

  25. Y.T. Hou, M.F. Li, Y. Jin, W.H. Lai, Direct tunneling hole currents through ultrathin gate oxides in metal-oxide-semiconductor devices. J. Appl. Phys. 91(1), 258–264 (2002)

    Article  ADS  Google Scholar 

  26. K. Roy, S. Mukhopadhyay, H. Meimand-Mehmoodi, Leakage current mechanisms and leakage reduction techniques in deep-submicron CMOS circuits. IEEE Proc. 91, 305–327 (2003)

    Article  Google Scholar 

  27. S.C. Lin, J.B. Kuo, Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron Devices 50(12), 2559–2564 (2003)

    Article  ADS  Google Scholar 

  28. K.P. Pradhan, S.K. Mohapatra, P.K. Sahu, D.K. Behera, Impact of high-k gate dielectric on analog and RF performance of nanoscale DGMOSFET. Microelectron. J. 45(2), 144–151 (2014)

    Article  Google Scholar 

  29. Y. Yang, X. Tong, L.-T. Yang, P.-F. Guo, L. Fan, Y.-C. Yeo, Tunneling field-effect transistor: capacitance components and modeling. IEEE Electron Device Lett. 31(7), 752–754 (2010)

    Article  ADS  Google Scholar 

  30. S. Yadav, R. Madhukar, D Sharma, M. Aslam, D. Soni, N Sharma. A new structure of electrically doped TFET for improving electronic characteristics. Appl. Phys. A. 124(7), 517–525 (2018)

  31. A.S. Verhulst, W.G. Vandenberghe, K. Maex, G. Groeseneken, Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91(5), 053102–053104 (2007)

    Article  ADS  Google Scholar 

  32. R. Chau, S. Datta, A. Majumdar. Opportunities and challenges of III–V nanoelectronics for future high speed, low power logic applications, in IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05 (IEEE, Palm Springs, CA, 2005), pp. 17–20. https://doi.org/10.1109/CSICS.2005.1531740

  33. P. Razavi, I. Ferain, S. Das, R. Yu, N. D. Akhavan, J.-P. Colinge, Intrinsic gate delay and energy-delay product in junctionless nanowire transistors, in Proc. 13th Int. Conf. Ultimate Integr. Silicon (ULIS), Grenoble, France, 2012, pp. 125–128

  34. J. Lee, G. Bosman, K.R. Green, D. Ladwig, Model and analysis of gate leakage current in ultrathin nitrided oxide MOSFETs. IEEE Trans. Electron Devices 49(7), 1232–1241 (2002)

    Article  ADS  Google Scholar 

  35. S.A. Sahu, R. Goswami, S.K. Mohapatra, Characteristic enhancement of hetero dielectric DG TFET using SiGe pocket at source/channel interface: proposal and investigation. Silicon (2019). https://doi.org/10.1007/s12633-019-00159-9

    Article  Google Scholar 

  36. H.B. Joseph, S.K. Singh, R.M. Hariharan, P.A. Priya, N.M. Kumar, D.J. Thiruvadigal, Hetro structure PNPN tunnel FET: analysis of scaling effect on counter doping. Appl. Surf. Sci. 449, 823–828 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Jit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Baral, K., Kumar, S. et al. Source pocket engineered underlap stacked-oxide cylindrical gate tunnel FETs with improved performance: design and analysis. Appl. Phys. A 126, 166 (2020). https://doi.org/10.1007/s00339-020-3336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3336-8

Keywords

Navigation