Skip to main content

Advertisement

Log in

Achieving ultrahigh energy storage density and energy efficiency simultaneously in barium titanate based ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dielectric capacitors have attracted much attention due to fast charge–discharge and superior energy storage capacity. For practical applications, pulsed power capacitors depend on not only large energy density but also excellent energy efficiency, which are very hard to obtain simultaneously. In this work, ultrahigh energy storage density (Wrec) of 2.485 J/cm3 and energy storage efficiency (η) of 96.2% are achieved simultaneously in (1 − x)BaTiO3xBi(Ni0.5Zr0.5)O3 (xBNZ) (x = 0.16) relaxor ferroelectric ceramics. The meaningfully improved Wrec was obviously better than that of most the other unleaded ceramics. Meanwhile, the microstructures, dielectric properties and energy storage behaviors of the xBNZ ceramics were systematically investigated. In addition, decent temperature and frequency stability (variation of Wrec < 12% over 25–100 ℃ and Wrec < 0.2% in 1–100 Hz) can be obtained in this system. These results illustrate that 0.16BNZ ceramic can be a promising unleaded material for advanced energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renew. Sust. Energ. Rev. 39, 748–764 (2014)

    Article  Google Scholar 

  2. M.X. Zhou, R.H. Liang, Z.Y. Zhou, X.L. Dong, J. Mater. Chem. A 6, 17896–17904 (2018)

    Article  Google Scholar 

  3. J.Y. Wu, A. Mahajan, L. Riekehr, H.F. Zhang, B. Yang, N. Meng, Z. Zhang, H.X. Yan, Nano. Energy 50, 723–732 (2018)

    Article  Google Scholar 

  4. N.T. Liu, R.H. Liang, Z.Y. Zhou, X.L. Dong, J. Mater. Chem. C 6, 10211–10217 (2018)

    Article  Google Scholar 

  5. D.W. Wang, Z.M. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q.L. Zhao, X.L. Tan, I.M. Reaney, J. Mater. Chem. A 6, 4133–4144 (2018)

    Article  Google Scholar 

  6. A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Materials 8, 8009–8031 (2015)

    Article  ADS  Google Scholar 

  7. Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater 25, 6334–6365 (2013)

    Article  Google Scholar 

  8. C. Wang, F. Yan, H.B. Yang, Y. Lin, T. Wang, J. Alloy. Compd 749, 605–611 (2018)

    Article  Google Scholar 

  9. J. Roedel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc 92, 1153–1177 (2009)

    Article  Google Scholar 

  10. X.L. Chen, X. Li, H.F. Zhou, J. Sun, X.X. Li, X. Yan, C.C. Sun, J.P. Shi, F.H. Pang, J. Mater. Sci. Mater. Electron. 30, 15912–15922 (2019)

    Article  Google Scholar 

  11. X.X. Li, X.L. Chen, X.B. Liu, X. Yan, H.F. Zhou, G.F. Liu, X. Li, J. Sun, J. Electron. Mater. 48, 296–303 (2018)

    Article  ADS  Google Scholar 

  12. M.X. Zhou, R.H. Liang, Z.Y. Zhou, X.L. Dong, Ceram. Int. 45, 3582–3590 (2019)

    Article  Google Scholar 

  13. M.X. Zhou, R.H. Liang, Z.Y. Zhou, X.L. Dong, J. Mater. Chem. C 6, 8528–8537 (2018)

    Article  Google Scholar 

  14. Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, J. Mater. Chem. A 3, 18146–18153 (2015)

    Article  Google Scholar 

  15. T. Wang, L. Jin, C.C. Li, Q.Y. Hu, X.Y. Wei, D. Lupascu, J. Am. Ceram. Soc 98, 559–566 (2015)

    Article  Google Scholar 

  16. L.W. Wu, X.H. Wang, L.T. Li, RSC. Adv. 6, 14273 (2016)

    Article  Google Scholar 

  17. Q.Y. Hu, L. Jin, T. Wang, C.C. Li, Z. Xing, X.Y. Wei, J. Alloy. Compd. 640, 416–420 (2015)

    Article  Google Scholar 

  18. X.B. Zhao, Z.Y. Zhou, R.H. Liang, F.H. Liu, X.L. Dong, Ceram. Int. 43, 9060–9066 (2017)

    Article  Google Scholar 

  19. X.L. Chen, X. Li, H.F. Zhou, J. Sun, X.X. Li, X. Yan, C.C. Sun, J.P. Shi, J. Adv. Ceram. 8, 427–437 (2019)

    Article  Google Scholar 

  20. X.L. Chen, X.X. Li, X. Yan, G.F. Liu, H.F. Zhou, Appl. Phys. A-Mater. 124, 423 (2018)

    Article  ADS  Google Scholar 

  21. Z. Sun, L.X. Li, S.H. Yu, X.Y. Kang, S.L. Chen, Energy storage properties and relaxor behavior of lead-free Ba1- xSm2 x /3Zr0.15Ti0.85O3 ceramics. Dalton Trans. 46, 14341–14347 (2017)

    Article  Google Scholar 

  22. X.W. Jiang, H. Hao, S.J. Zhang, J.H. Lv, M.H. Cao, Z.H. Yao, H.X. Liu, J. Eur. Ceram. Soc. 39, 1103–1109 (2019)

    Article  Google Scholar 

  23. F. Li, M.X. Zhou, J.W. Zhai, B. Shen, H.R. Zeng, J. Eur. Ceram. Soc. 38, 4646–4652 (2018)

    Article  Google Scholar 

  24. L. Zhang, Y.P. Pu, M. Chen, J. Alloy. Compd. 775, 342–347 (2019)

    Article  Google Scholar 

  25. Z.T. Yang, H.L. Du, L. Jin, Q.Y. Hu, S.B. Qu, Z.N. Yang, Y. Yu, X.Y. Wei, Z. Xu, J. Eur. Ceram. Soc. 39, 2899–2907 (2019)

    Article  Google Scholar 

  26. Z.T. Yang, F. Gao, H.L. Du, L. Jin, L.L. Yan, Q.Y. Hu, Y. Yu, S.B. Qu, X.Y. Wei, Z. Xu, Y.J. Wang, Nano. Energy 58, 768–777 (2019)

    Article  Google Scholar 

  27. B.Y. Qu, H.L. Du, Z.T. Yang, J. Mater. Chem. C 4, 1795–1803 (2016)

    Article  Google Scholar 

  28. Y. Yang, H. Wang, L.N. Bi, Q.J. Zheng, G.F. Fan, W.J. Jie, D.M. Lin, J. Eur. Ceram. Soc. 39, 3051–3056 (2019)

    Article  Google Scholar 

  29. X.L. Gao, Y. Li, J.W. Chen, C. Yuan, M. Zeng, A.H. Zhang, X.S. Gao, X.B. Lu, Q.L. Li, J.M. Liu, J. Eur. Ceram. Soc. 39, 2331–2338 (2019)

    Article  Google Scholar 

  30. D.W. Wang, Z.M. Fan, W.B. Li, D. Zhou, A. Feteira, G. Wang, S.S. Murakami, S.K. Sun, Q.L. Zhao, X.L. Tan, I.M. Reaney, ACS Appl. Energy Mater. 1, 4403–4412 (2018)

    Article  Google Scholar 

  31. Y. Tian, L. Jin, H.F. Zhang, Z. Xu, X.Y. Wei, G. Viola, I. Abrahams, H.X. Yan, J. Mater. Chem. A 5, 17525–17531 (2017)

    Article  Google Scholar 

  32. J.M. Ye, G.S. Wang, M.X. Zhou, N.T. Liu, X.F. Chen, S. Li, F. Cao, X.L. Dong, J. Mater. Chem. C 7, 5639–5645 (2019)

    Article  Google Scholar 

  33. Y.C. Wu, Y.Z. Fan, N.T. Liu, P. Peng, M.X. Zhou, S.G. Yan, F. Cao, X.L. Dong, G.S. Wang, J. Mater. Chem. C 7, 6222–6230 (2019)

    Article  Google Scholar 

  34. X. Li, X.L. Chen, J. Sun, M.X. Zhou, H.F. Zhou, Ceram. Int. 46, 3426–3432 (2020)

    Article  Google Scholar 

  35. Q.B. Yuan, G. Li, F.Z. Yao, S.D. Cheng, Y.F. Wang, R. Ma, S.B. Mi, M. Gu, K. Wang, J.F. Li, H. Wang, Nano. Energy 52, 203–210 (2018)

    Article  Google Scholar 

  36. X.L. Chen, X. Li, J. Sun, C.C. Sun, J.P. Shi, F.H. Pang, H.F. Zhou, Ceram. Int. 46, 2764–2771 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 11664008, 61761015), Natural Science Foundation of Guangxi (Nos. 2018GXNSFFA050001, 2017GXNSFDA198027 and 2017GXNSFFA198011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, X., Sun, J. et al. Achieving ultrahigh energy storage density and energy efficiency simultaneously in barium titanate based ceramics. Appl. Phys. A 126, 146 (2020). https://doi.org/10.1007/s00339-020-3326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3326-x

Keywords

Navigation