Skip to main content
Log in

Influence of optimized concentration of samarium (III) ions on structural, optical and fluorescence properties of calcium-based lead borate glasses for reddish-orange device applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The calcium-based lead borate glasses doped with 1 mol% Sm3+ ions were prepared using melt quenching technique. The prepared glass samples were analyzed through an X-ray diffractometer, FT-IR, Optical absorption, Emission, and fluorescence decay analysis. Physical properties have been calculated for the prepared glasses. The absorption spectrum has been recorded for 1.0 mol% Sm3+ ions doped calcium-based lead borate glasses. From the absorption spectrum, oscillatory strengths and JO intensity parameters have been calculated. The visible and near-infrared emission spectra were recorded with 402 nm excitation for 1.0 mol% Sm3+ ions. The prepared glass shows that the highest emission intensity for 4G5/2 → 6H11/2 transition centered at 610 nm. Emission properties for the prepared glass were calculated. Decay profile has been analyzed and lifetime value for 4G5/2 exited level of Sm3+ ion calculated for 1.0 mol% Sm3+ ions doped Ca-based lead borate glass: decay profile was well fitted for exponential decay 2, and the lifetime of 4G5/2 excited level is 1.041 ms. The obtained results suggested that the present 1.0 mol% Sm3+ ions doped calcium-based lead borate glass could be useful for the visible lasers and or photonic display devices applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A.K. Elfayoumi, M. Farouk, M.G. Brik, M.M. Elokr, J. Alloys Compd. 492, 712 (2010)

    Google Scholar 

  2. A.J. Kenyon, Prog. Quantum Electron 26, 225 (2002)

    ADS  Google Scholar 

  3. B.C. Jamalaiah, M.V.V. Kumar, K.R. Gopal, Opt. Mater. Amst. 33, 1643 (2011)

    ADS  Google Scholar 

  4. Y. Wang, C. Lin, H. Zheng, D. Sun, L. Li, B. Chen, J. Alloys Compd. 559, 123 (2013)

    Google Scholar 

  5. S. Kaur, M. Jayasimhadri, A.S. Rao, J. Alloys Compd. 697, 367 (2017)

    Google Scholar 

  6. G.R. Dillip, S.J. Dhoble, B.D.P. Raju, Opt. Mater. 35, 2261 (2013)

    ADS  Google Scholar 

  7. C.M. Reddy, B.D.P. Raju, N.J. Sushma, N.S. Dhoble, S.J. Dhoble, Renew. Sust. Energy Rev. 51, 566 (2015)

    Google Scholar 

  8. M. Rajesh, T. Gowthami, N.J. Sushma, S. Kamala, B.D.P. Raju, Infrared. Phy. Tech. 90, 221 (2018)

    ADS  Google Scholar 

  9. G.R. Dillip, C.M. Reddy, M. Rajesh, S. Chaurasia, B.D.P. Raju, S.W. Joo, Bull. Mater. Sci. 39, 3 (2016)

    Google Scholar 

  10. V. Venkatramu, P. Babu, C.K. Jayasankar, W. Th Trȍster, G.W. Sievers, Opt. Mater. 29, 1429 (2007)

    ADS  Google Scholar 

  11. Y. Gandhi, I.V. Kityk, M.G. Brik, P.R. Rao, N. Veeraiah, J. Alloys Compd. 508, 278 (2010)

    Google Scholar 

  12. K.S.V. Sudhakar, M.S. Reddy, L.S. Rao, N. Veeraiah, J. Lumin. 128, 1791 (2008)

    Google Scholar 

  13. E.C. Paz, J.D.M. Dias, G.H.A. Melo, T.A. Lodi, J.O. Carvalho, P.F.F. Filho, M.J. Barboza, F. Pedrochi, A. Steimacher, Mater. Chem. Phys. 178, 133 (2016)

    Google Scholar 

  14. G. Devarajulu, O. Ravi, C.M. Reddy, S.Z.A. Ahamed, B.D.P. Raju, J. Lumin. 194, 499 (2018)

    Google Scholar 

  15. P. Babu, C.K. Jayasankar, Opt. Mater. 15, 65 (2000)

    ADS  Google Scholar 

  16. S. Mahamuda, K. Swapna, M. Venkateswarlu, A.S. Rao, S. Shakya, G.V. Prakash, J. Lumin. 154, 410 (2014)

    Google Scholar 

  17. B. Sailaja, R.J. Stella, G.T. Rao, B.J. Raja, V.P. Manjari, J. Mol. Struct. 1096, 129 (2015)

    ADS  Google Scholar 

  18. C.M. Reddy, G.R. Dillip, K. Mallikarjuna, S.Z.A. Ahamed, B.S. Reddy, B.D.P. Raju, J. Lumin. 131, 1368 (2011)

    Google Scholar 

  19. S.Z.A. Ahamed, C.M. Reddy, B.D.P. Raju, Spectrochim Acta A 103, 246 (2013)

    ADS  Google Scholar 

  20. N. Deopa, A.S. Rao, J. Lumin. 192, 832 (2017)

    Google Scholar 

  21. N.S. Rao, M. Rajesh, G.R. Reddy, B.D.P. Raju, S. Dhanapandian, Opt. Mater. 97, 109360 (2019)

    Google Scholar 

  22. M. Rajesh, M.R. Babu, N.J. Sushma, B.D.P. Raju, J. Non Cryst Solids. 528, 119732 (2020)

    ADS  Google Scholar 

  23. R.V. Adams, R.W. Douglas, J. Soc Glass Technol 43, 147 (1959)

    Google Scholar 

  24. B.C. Jamalaiah, J.S. Kumar, A.M. Babu, T. Suhasini, L.R. Moorty, J. Lumin. 129, 363 (2009)

    Google Scholar 

  25. J.S. Kumar, K. Pavani, A.M. Babu, N.K. Giri, S.B. Rai, L.R. Moorty, J. Lumin. 130, 1916 (2010)

    Google Scholar 

  26. G. Lakshminarayana, S. Buddhudu, Spectrochim. Acta A. 62, 364 (2005)

    ADS  Google Scholar 

  27. H.P. Lim, A. Karki, S. Feller, J.E. Kasper, G. Sumcad, J. Non Cryst. Solids 91, 324 (1987)

    ADS  Google Scholar 

  28. S. Bale, S. Rahman, ISRN Spectrosc. 2012, 1 (2012)

    Google Scholar 

  29. G. Sharma, K. Singh, S. Mohan, H. Singh, S. Bindra, Rad. Phys. Chem 75, 959 (2006)

    ADS  Google Scholar 

  30. P.J. Bray, J.G. O’Keefe, Phys. Chem. Glasses 4, 37 (1963)

    Google Scholar 

  31. R. Brueckner, H.U. Chun, H. Goretzki, M. Sammet, J. Non Cryst. Solids 42, 49 (1980)

    ADS  Google Scholar 

  32. L.J.F. Broer, C.J. Gorter, J. Hoogschagen, Physica 11, 231 (1945)

    ADS  Google Scholar 

  33. W.T. Carnall, P.R. Fields, B.G. Wybourne, J. Chem. Phys. 42, 3797 (1965)

    ADS  Google Scholar 

  34. V.M. Orera, P.J. Alonso, R. Cases, R. Alcala, Phys. Chem. Glasses 29, 59 (1998)

    Google Scholar 

  35. B.R. Judd, Phys. Rev. 127, 750 (1962)

    ADS  Google Scholar 

  36. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    ADS  Google Scholar 

  37. S. Tanabe, T. Ohayagi, N. Soga, T. Hanada, Phys. Rev. B 46, 3305 (1992)

    ADS  Google Scholar 

  38. T. Suhasini, J.S. Kumar, T. Sasikala, K. Jang, H.S. Lee, M. Jayasimhadri, J.H. Jeong, S.S. Yi, L.R. Moorthy, Opt. Mater. 31, 1167 (2009)

    ADS  Google Scholar 

  39. N. Deopa, A.S. Rao, Opt. Mater. 72, 31 (2017)

    ADS  Google Scholar 

  40. E.W.J.L. Oomen, A.M.A. Van Dongen, J. Non Cryst. Solids 111, 1 (1989)

    Google Scholar 

  41. T. Subramanyam, K.R. Gopal, R.P. Suvarna, B.C. Jamalaiah, C.S. Rao, Phys B 533, 76 (2018)

    ADS  Google Scholar 

  42. B.J. Chen, L.B. Shen, E.Y.B. Pun, H. Lin, Opt. Exp 20, 879 (2012)

    ADS  Google Scholar 

  43. M. Inokuti, F. Hirayama, J. Chem. Phys. 43, 1978 (1965)

    ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, B. Deva Prasad Raju, is highly thankful to the Department of Science and Technology, New Delhi for providing financial assistance in the form of Major Research Project (File No. EEQ/2016/000041 dt: 17-01-2017) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhanapandian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, N.S., Rajesh, M., Kumaresan, S. et al. Influence of optimized concentration of samarium (III) ions on structural, optical and fluorescence properties of calcium-based lead borate glasses for reddish-orange device applications. Appl. Phys. A 126, 132 (2020). https://doi.org/10.1007/s00339-020-3317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3317-y

Keywords

Navigation