Skip to main content
Log in

Measurement of ionization rate of charge carriers and breakdown characteristics of CVD-grown 4H-SiC diodes under steady magnetic field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The impact ionization rate of electrons and holes in (0001)-oriented 4H-SiC has been measured under steady oblique magnetic field and hence, the influence of magnetic field on the breakdown characteristics of 4H-SiC diodes has been investigated. A set of three diodes having p+–n–n+ structure and another set of three diodes having n+–p–p+ structure have been grown on (0001)-oriented n+ and p+ 4H-SiC substrates using chemical vapor deposition (CVD) technique with different epitaxial layer thicknesses for carrying out the measurements within the electric field range of 2.5 × 108–4.0 × 108 V m−1. The ionization rate data are extracted from the photomultiplication measurements using ultra-violet light source of 260-nm wavelength. The ionization rates are found to be decreased with the increase of the magnetic field strength, especially at low electric fields; this decrement is found to be more pronounced in the ionization rate of electrons than the same of holes. A theoretical model developed by the authors is used to calculate the breakdown voltage of the 4H-SiC diodes. The numerical results are compared with the experimentally measured breakdown characteristics and those are found to be in good agreement within the externally applied magnetic field strengths of 0–1500 Gauss. Breakdown voltage of a diode is found to be increased due to the presence of magnetic field; the maximum values of these said increments are found to be around 5% and 2.6% in p+–n–n+ and n+–p–p+ diodes, respectively. Better magnetic field sensitivity is observed in the diodes having broader epitaxial layer widths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Kimoto, Jpn. J. Appl. Phys. 54(4), 040103 (2015)

    Article  ADS  Google Scholar 

  2. N. Kaji, H. Niwa, J. Suda, T. Kimoto, IEEE Trans. Electron Devices 62(2), 374 (2015)

    Article  ADS  Google Scholar 

  3. L. Cheng, J.W. Palmour, A.K. Agarwal, S.T. Allen, E.V. Brunt, G.Y. Wang, V. Pala, W.J. Sung, A.Q. Huang, M.J. O'Loughlin, A.A. Burk, D.E. Grider, C. Scozzie, Mater. Sci. Forum 778–780, 1089 (2014)

    Article  Google Scholar 

  4. H. Miyake, T. Okuda, H. Niwa, T. Kimoto, J. Suda, IEEE Electron Device Lett. 33(11), 1598 (2012)

    Article  ADS  Google Scholar 

  5. A.O. Konstantinov, Q. Wahab, N. Nordell, U. Lindefelt, Appl. Phys. Lett. 71(1), 90 (1997)

    Article  ADS  Google Scholar 

  6. R. Raghunathan, B. J. Baliga, in Proceedings of IEEE Int. Symp. Semiconductor Devices ICs (ISPSD), May 1997, pp. 173–176

  7. R. Raghunathan, B.J. Baliga, Solid-State Electron 43(2), 199–211 (1999)

    Article  ADS  Google Scholar 

  8. T. Hatakeyama, Phys. Status Solidi A 206(10), 2284 (2009)

    Article  ADS  Google Scholar 

  9. T. Hatakeyama, T. Watanabe, T. Shinohe, K. Kojima, K. Arai, N. Sano, Appl. Phys. Lett. 85(8), 1380 (2004)

    Article  ADS  Google Scholar 

  10. H. Niwa, J. Suda, T. Kimoto, IEEE Trans. Electron Devices 62(10), 3326 (2015)

    Article  ADS  Google Scholar 

  11. P. Mukherjee, D. Chatterjee, A. Acharyya, J. Comput. Electron 16(3), 503 (2017)

    Article  Google Scholar 

  12. A. Acharyya, J.P. Banerjee, J. Comput. Electron 13, 917 (2014)

    Article  Google Scholar 

  13. A. Acharyya, S. Chatterjee, A. Das, A. Banerjee, A.R. Pandey, A. Yadav, J.P. Banerjee, J. Comput. Electron 15, 34 (2016)

    Article  Google Scholar 

  14. H. Pfleiderer, Solid-State Electron. 15, 335 (1972)

    Article  ADS  Google Scholar 

  15. E. I. Karakushan, V. I. Stafeev, Sov. Phys.-Solid State, 3, 493 (1961)

  16. E. I. Karakushan, V. I. Stafeev, Sov. Phys.-Solid State, 3, 1476 (1962)

  17. G.P. Srivastava, M. Misra, Z. Angew, Phys. 14, 579 (1962)

    Google Scholar 

  18. R. Parshad, S.C. Mehta, Indian J. Pure Appl. Phys. 5, 23 (1967)

    Google Scholar 

  19. S.C. Mehta, R. Parshad, J. Appl. Phys. 41, 760 (1970)

    Article  ADS  Google Scholar 

  20. Z.G. Sun, M. Mizuguchi, T. Manago, H. Akinaga, Appl. Phys. Lett. 85(23), 5643 (2004)

    Article  ADS  Google Scholar 

  21. T. Semba, T. Yamamoto, Y. Murata, M. Abe, S. Koda, Y. Iwasaki, Y. Takabayashi, T. Kaneyasu, in Proceedings of IPAC, Kyoto, Japan, 2010, p. 358–360

  22. M.H. Woods, W.C. Johnson, M.A. Lampert, Solid-State Electronics 16, 381 (1973)

    Article  ADS  Google Scholar 

  23. P. Banerjee, A. Acharyya, A. Biswas, A.K. Bhattacharjee, J. Comput. Electron. 15(1), 210 (2016)

    Article  Google Scholar 

  24. K.V. Vassilevski, K. Zekentes, A.V. Zorenko, L.P. Romanov, IEEE Electron Device Lett. 21, 485 (2000)

    Article  ADS  Google Scholar 

  25. A. Acharyya, M. Mukherjee, J.P. Banerjee, Int. J. Electron. 102(9), 1429 (2015)

    Article  Google Scholar 

  26. S. M. Sze, Physics of semiconductor devices, 2nd edn. Wiley, New York (1981).

  27. H.P. Baltes, L. Andor, A. Nathan, H.G. Schmidt-Weinmar, IEEE Trans. Electron Dev. 31, 996 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the ECR award scheme funded by SERB, Government of India, having grant file number ECR/2017/000024/ES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Acharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, P., Hossain, S.K.R., Acharyya, A. et al. Measurement of ionization rate of charge carriers and breakdown characteristics of CVD-grown 4H-SiC diodes under steady magnetic field. Appl. Phys. A 126, 127 (2020). https://doi.org/10.1007/s00339-020-3308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3308-z

Keywords

Navigation