Skip to main content
Log in

Electrical, dielectric and photocatalytic applications of iron-based nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A series of iron-based nanocomposites such as Cu–Fe (CFNCs), Ni–Fe (NFNCs), Ag–Fe (SFNCs) and Al–Fe (AFNCs) were fabricated via sol–gel route. An extensive investigation about crystallinity, microstructure, electrical and optical properties was carried out by utilizing X-ray diffractometer (XRD), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) and scanning electron microscopy (SEM). The frequency-dependent AC conductivity, dielectric constant and dielectric loss were measured in the frequency range of 25 kHz–2 MHz at room temperature via an LCR meter. The highest conductivity ~ 2.85 × 10−7S/m was revealed by AFNCs as compared to other nanocomposites. The Maxwell–Wagner model for induced polarization and Koop’s phenomenological theory of dielectrics were followed by all the fabricated nanocomposites in the temperature range of 30–600 °C. The maximum dielectric constant ~ 930 was measured for AFNCs at a temperature of 200 °C. Furthermore, the synthesized nanocomposites effectively degraded a toxic organic dye Rhodamine B (RhB) and the degradation (%) ~ 77, 85, 86, and 87 within the time of 50, 40, 50 and 70 min was recorded for CFNCs, NFNCs, SFNCs and AFNCs, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Ahmad, I. Ali, F. Aen, M.U. Islam, M.N. Ashiq, S. Atiq, W. Ahmad, M.U. Rana, Effect of sintering temperature on magnetic and electrical properties of nano-sized Co2W hexaferrites. Ceram. Int. 38(2), 1267–1273 (2012)

    Article  Google Scholar 

  2. Y. Salunkhe, D. Kulkarni, Structural, magnetic and microstructural study of Sr2Ni2Fe12O22. J. Magn. Magn. Mater. 279(1), 64–68 (2004)

    Article  ADS  Google Scholar 

  3. M. Obol, C. Vittoria, Measurement of permeability of oriented Y-type hexaferrites. J. Magn. Magn. Mater. 265(3), 290–295 (2003)

    Article  ADS  Google Scholar 

  4. G. Mathew, S.S. Nair, A.M. John, P.A. Joy, M.R. Anantharaman, Structural, magnetic and electrical properties of the sol–gel prepared Li0.5Fe2.5O4 fine particles. J. Phys. D Appl. Phys. 39(5), 900 (2006)

    Article  ADS  Google Scholar 

  5. H. Gul, A.Z. Abbasi, F. Amin, M.A. Rehman, A. Maqsood, Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J Magn Magn Mater 311(2), 494–499 (2007)

    Article  ADS  Google Scholar 

  6. H. Alizadeh, R.A. Ardakani, M.R. Amini, M. Ghazanfari, Structural and phase evolution in mechanically alloyed calcium copper titanate dielectrics. Ceram. Int. 39, 3307–3312 (2013)

    Article  Google Scholar 

  7. B. Li, Y. Wang, Facile synthesis and photocatalytic activity of ZnO–CuO nano-composite Super-lattice. Microstruct. 47, 615–623 (2010)

    Article  Google Scholar 

  8. M.M. Khin, A.S. Nair, V.J. Babu, R. Murugan, S. Ramakrishna, A review on nano-materials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012)

    Article  Google Scholar 

  9. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photo-catalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)

    Article  Google Scholar 

  10. X. Chen, S.S. Mao, Titanium dioxide nano-materials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  11. growth mechanism and photo-catalytic activity, N Nazar, I Bibi, S Kamal, M Iqbal, S Nouren, K Jilani, M Umair, S Ata. Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent. Int. J. Biol. Macro-mol. 106, 1203–1210 (2017)

    Google Scholar 

  12. Z.C. Wu, Y. Zhang, T.-X. Tao, L. Zhang, H. Fong, Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Appl. Surf. Sci. 257, 1092–1097 (2010)

    Article  ADS  Google Scholar 

  13. A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Influencing parameters in the photo-catalytic degradation of organic effluent via nano-metal oxide catalyst: a review. Mater. Sci Indian J (2015). https://doi.org/10.1155/2015/601827

    Article  Google Scholar 

  14. R. Arunachalam, S. Dhanasingh, B. Kalimuthu, M. Uthirappan, C. Rose, A.B. Mandal, Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photo-catalytic degradation. Colloid. Surf B. 94, 226–230 (2012)

    Article  Google Scholar 

  15. V.S. Suvith, D. Philip, Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 118, 526–532 (2014)

    Article  ADS  Google Scholar 

  16. E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag, S.L. Suib, Biosynthesis of iron and silver nanoparticles at room temperature using aqueous Sorghum bran extracts. Langmuir 27, 264–271 (2011)

    Article  Google Scholar 

  17. S. Joshi, M. Mudigere, L. Krishnamurthy, G.L. Shekar, Growth and morphological studies of NiO/CuO/ZnO based nanostructured thin films for photovoltaic applications. Chem. Pap. 68, 1584–1592 (2014)

    Article  Google Scholar 

  18. J.A. Switzer, H.M. Kothari, P. Poizot, S. Nakanishi, E.W. Bohannan, Enantio-specific electro-deposition of a chiral catalyst. Nature 33, 490 (2003)

    Article  ADS  Google Scholar 

  19. X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, Preparation and electrochemical performance of polycrystalline and single crystalline CuO nano-rods as anode materials for Li ion battery. J. Phys. Chem. B. 108, 5547–5551 (2004)

    Article  Google Scholar 

  20. P.K. Khanna, S. Gaikwad, P.V. Adhyapak, N. Singh, R. Marimuthu, Synthesis and characterization of copper nanoparticles. Mater. Lett. 61, 4711–4714 (2007)

    Article  Google Scholar 

  21. G. Dinda, D. Halder, C. Vazquez-Vazquez, M.A. Lopez-Quintela, A. Mitra, Green synthesis of copper nanoparticles and their antibacterial property. J. Surf. Sci. Technol. 31, 117–122 (2015)

    Google Scholar 

  22. Q. Zhang, Z. Yang, B. Ding, X. Lan, Y. Guo, Preparation of copper nanoparticles by chemical reduction method using potassium boro-hydride. Trans. Non-ferrous Metals Soc. China. 20, 240–244 (2010)

    Article  Google Scholar 

  23. S. Giuffrida, L.L. Costanzo, G. Ventimiglia, C. Bongiorno, Photochemical synthesis of copper nanoparticles incorporated in poly (vinyl pyrrolidone). J. Nano-part. Res. 10, 1183–1192 (2008)

    Article  ADS  Google Scholar 

  24. J.H. Yang, D. Wang, H.X. Han, C. Li, Roles of co-catalysts in photocatalysis and photo-electrocatalysis. Accounts. Chem. Res. 46, 1900–1909 (2013)

    Article  Google Scholar 

  25. Q.H. Liang, Z. Li, Z.-H. Huang, F.Y. Kang, Q.H. Yang, Holey graphitic carbon nitride nano sheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25, 6885–6892 (2015)

    Article  Google Scholar 

  26. G.G. Zhang, S.H. Zang, X.C. Wang, Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal 5, 941–947 (2015)

    Article  Google Scholar 

  27. C.C. Hu, H.S. Teng, Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting. J. Catal. 272, 1–8 (2010)

    Article  Google Scholar 

  28. Y. Xu, R. Xu, Nickel-based co-catalysts for photocatalytic hydrogen production. Appl Surf Sci. 351, 779–793 (2015)

    Article  Google Scholar 

  29. A. Indra, P.W. Menezes, K. Kailasam, D. Hollmann, M. Schröder, A. Thomas, A. Brücknerc, M. Driess, Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species? Chem. Commun. 52, 104–107 (2016)

    Article  Google Scholar 

  30. M. ElKemary, N. Nagy, I. ElMehasseb, Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 16, 1747–1752 (2013)

    Article  Google Scholar 

  31. L. Pei, X. Zhang, L. Zhang, Y. Zhang, Y. Xu, Solvent influence on the morphology and super-capacitor performance of the nickel oxide. Mater. Lett. 162, 238–241 (2016)

    Article  Google Scholar 

  32. S. Sankar, S.K. Sharma, N. An, H. Lee, D.Y. Kim, Y.B. Im, Y.D. Cho, R.S. Ganesh, S. Ponnusamy, P. Raji, L.P. Purohit, Photocatalytic properties of Mn-doped NiO spherical nanoparticles synthesized from sol-gel method. Optik Int. J. Light Electron. Opt. 127, 10727–10734 (2016)

    Article  Google Scholar 

  33. K. Anandan, V. Rajendran, Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Mater. Sci. Semicond. Process. 14, 43–47 (2011)

    Article  Google Scholar 

  34. K. Motevalli, Z. Zarghami, M. Panahi-Kalamuei, Simple, novel and low-temperature synthesis of rod-like NiO nanostructure via thermal decomposition route using a new starting reagent and its photocatalytic activity assessment. J. Mater. Sci. Mater. Electron. 27, 4794–4799 (2016)

    Article  Google Scholar 

  35. A.A. Eliseev, A.V. Lukashin, A.A. Vertegel, L.I. Heifets, A.I. Zhirov, Y.D. Tretyakov, Complexes of Cu (II) with polyvinyl alcohol as precursors for the preparation of CuO/SiO2 nanocomposites. Mater. Res. Innov. 3, 308–312 (2000)

    Article  Google Scholar 

  36. A.E. Said, M.M. El-Wahab, S.A. Soliman, M.N. Goda, Synthesis and characterization of nano CuO–NiO mixed oxides. Nano-sci. Nano-eng. 2, 17–28 (2014)

    Google Scholar 

  37. S.K. Ghosh, S. Kundu, M. Mandal, T. Pal, Silver and gold nano cluster catalyzed reduction of methylene blue by arsine in a micellar medium. Langmuir 18, 8756–8760 (2002)

    Article  Google Scholar 

  38. T. Ren, L. Ngwegia, N. Nforbi, R. Kanakala, O.A. Graeve, Phase stability and mechanisms of transformation of La-doped γ-alumina. Inorg. Chem. 57, 3035–3041 (2018)

    Article  Google Scholar 

  39. Z. Zhu, S. Cheng, H. Liu, Size-controlled synthesis of alumina nanoparticles through an additive-free reverse cation-anion double hydrolysis method. Mater. Lett. 161, 720–723 (2015)

    Article  Google Scholar 

  40. C. Ji, T.F. Ding, R.S. Zhang, K. Mane, H. Kim, M.C. Kong, C.W. Zou, Q.M. Wang, Low temperature deposition of nano-crystalline Al2O3 films by ion source-assisted magnetron sputtering. Vacuum 149, 284–290 (2018)

    Article  ADS  Google Scholar 

  41. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multi-ferroic magneto-electric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  42. L. Mitoseriu, V. Buscaglia, M. Viviani, M.T. Buscaglia, I. Pallecchi, C. Harnagea, A. Testino, V. Trefiletti, P. Nanni, A.S. Siri, BaTiO3-Ni0.5Zn0.5Fe2O4 ceramic composites with ferroelectric and magnetic properties. J. Eur. Ceram. Soc. 27, 4379–4382 (2007)

    Article  Google Scholar 

  43. S.A. Lokare, D.R. Patil, R.S. Devan, S.S. Chougule, Y.D. Kolekar, B.K. Chougule, Electrical conduction, dielectric behavior and magneto electric effect in (x) BaTiO3C (1–x) Ni094Co0.01Mn0.05Fe2O4 ME composites. Mater. Res. Bull. 43, 326–332 (2008)

    Article  Google Scholar 

  44. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B. 104, 6694–6709 (2000)

    Article  Google Scholar 

  45. N. Bayal, P. Jeevanandam, Synthesis of CuO@NiO core–shell nanoparticles by homogeneous precipitation method. J. Alloy. Comp. 537, 232–241 (2012)

    Article  Google Scholar 

  46. G.A. El-Shobaky, N.R. Radwan, M.S. El-Shall, A.M. Turky, H.M. Hassan, The role of method of preparation of CuO-NiO system on its physicochemical surface and catalytic properties. Colloids Surf. A. 311, 161–169 (2007)

    Article  Google Scholar 

  47. A. Rahdar, M. Aliahmad, Y. Azizi, N. Keikha, M. Moudi, F. Keshavarzi, CuO–NiO nanocomposites: synthesis, characterization, and cytotoxicity evaluation. Nano-med. Res. J. 2, 78–86 (2017)

    Google Scholar 

  48. S. A. Khan, S. B. Khan, A. M. Asiri. Layered double hydroxide of Cd–Al/C for the Mineralization and De-coloration of Dyes in Solar and Visible Light Exposure. Sci Rep. 1–15 (2016).

  49. S.B. Khan, S.A. Khan, A.M. Asiri, A fascinating combination of Co, Ni and Al, nano-material for oxygen evolution reaction. Appl. Surf. Sci. 370, 445–451 (2016)

    Article  ADS  Google Scholar 

  50. T. Dippong, E.A. Levei, G. Borodi, F. Goga, L.B. Tudoran, Influence of Co/Fe ratio on the oxide phases in nanoparticles of CoxFe3-xO4. J. Therm. Anal. Calorim. 119, 1001–1009 (2015)

    Article  Google Scholar 

  51. T. Ramesh, S.R. Murthy, Electromagnetic properties of nano-crystalline Al3+ substituted MgCuMn ferrites synthesized by microwave hydrothermal method. Bull. Mater. Sci. 39(6), 1593–1601 (2016)

    Article  Google Scholar 

  52. X. Liu, J. Zeng, W. Shi, J. Wang, T. Zhu, Y. Chen, Catalytic oxidation of benzene over ruthenium-cobalt bimetallic catalysts and study of its mechanism. Catal. Sci. Technol 7, 213–221 (2017)

    Article  Google Scholar 

  53. S.A. Khan, S.B. Khan, A.M. Asiri, Toward the design of Zn–Al and Zn–Cr–LDH wrapped in activated carbon for the solar assisted de-coloration of organic dyes. RSC Adv. 6, 83196–83208 (2016)

    Article  Google Scholar 

  54. S.A. Khan, S.B. Khan, T. Kamal, M. Yasir, A.M. Asiri, Antibacterial nano-composites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. Int. J. Biol. Macro Mol. 91, 744–751 (2016)

    Article  Google Scholar 

  55. T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, Synthesis of g-C3N4/SmVO4 composite photo-catalyst with improved visible light photo-catalytic activities in RhB degradation. Appl. Catal. B. 129, 255–263 (2013)

    Article  Google Scholar 

  56. C.E. Hetrick, J. Lichtenberger, M.D. Amiridis, Catalytic oxidation of chlorophenol over V2O5/TiO2 catalyst. Appl. Catal. B. 77, 255–263 (2008)

    Article  Google Scholar 

  57. L. Arun, C. Karthikeyan, D. Philip, D. Dhayanithi, N.V. Giridharan, C. Unni, Influence of transition metal ion Ni2+ on optical, electrical, magnetic and antibacterial properties of phyto-synthesized CuO nanostructure. Opt. Quant. Electron. 50, 414 (2018)

    Article  Google Scholar 

  58. M.P. Srinivasan, N. Punithavelan, Structural, morphological and dielectric investigations on NiO/CuO/ZnO combined semiconductor metal oxide structures based ternary nanocomposites. Mater. Res. Express. 7, 075033 (2018)

    Article  ADS  Google Scholar 

  59. N.H. Deepthi, Y.S. Vidya, K.S. Anantharaju, R.B. Basavaraj, D. Kavyashree, S.C. Sharma, H. Nagabhushana, Optical, electrical and luminescent studies of CuO/MgO nanocomposites synthesized via sonochemical method. J. Alloy. Comp. 786, 855–866 (2019)

    Article  Google Scholar 

  60. R.K. Selvan, V. Krishnan, C.O. Augustin, H. Bertagnolli, C.S. Kim, A. Gedanken, Investigations on the structural, morphological, electrical, and magnetic properties of CuFe2O4–NiO nanocomposites. Chem. Mater. 20, 429–439 (2007)

    Article  Google Scholar 

  61. P. Chand, P. Kumar, Effect of precursor’s medium on structural, optical and dielectric properties of CuO nanostructures. Optik. 156, 743–753 (2018)

    Article  ADS  Google Scholar 

  62. M. Zarei, M.B. Zarandi, M. Alizadeh, Preparation of CuO/CeO2 composites by the Pechini method and investigation of their structural and electrical properties. Ceram. Int. 45, 1991–1997 (2019)

    Article  Google Scholar 

  63. M. Sajid, M. Imran, J. Iqbal, Tailoring structural, surface, optical, and dielectric properties of CuO nano-sheets for applications in high-frequency devices. Appl. Phys. A. 124, 768 (2018)

    Article  ADS  Google Scholar 

  64. M.R. Das, P. Mitra, Influence of nickel incorporation on structural, optical and electrical characteristics of SILAR synthesized CuO thin films. J. Sol. Gel Sci. Technol. 87, 59–73 (2018)

    Article  Google Scholar 

  65. V.P. Dhawale, V.B. Khobragade, S.D. Kulkarni, Synthesis and characterization of aluminium oxide (Al2O3) nanoparticles and its application in azo dye decolourisation. Int. J. Environ. Chem. 2, 10–17 (2018)

    Article  Google Scholar 

  66. M. Ferhat, A. Zaoui, R. Ahuja, Magnetism and band gap narrowing in Cu-doped ZnO. Appl. Phys. Lett. 94, 142502 (2009)

    Article  ADS  Google Scholar 

  67. V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye-tartrazine by photodegradation on titanium dioxide surface. Mater. Sci. Eng. C. 31, 1062–1067 (2011)

    Article  Google Scholar 

  68. E. Ferdosi, H. Bahiraei, D. Ghanbari, Investigation the photocatalytic activity of CoFe2O4/ZnO and CoFe2O4/ZnO/Ag nanocomposites for purification of dye pollutants. Sep. Purif. Technol. 211, 35–39 (2019)

    Article  Google Scholar 

  69. Y. Su, P. Chen, F. Wang, Q. Zhang, T. Chen, Y. Wang, K. Yao, W. Lv, G. Liu, Decoration of TiO2/g-C3N4 Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin. RSC Adv. 7, 34096–34103 (2017)

    Article  Google Scholar 

  70. N. Chandel, K. Sharma, A. Sudhaik, P. Raizada, A. H. Bandegharaei, V. K. Thakur, P. Singh. Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. https://doi.org/10.1016/j.arabjc.2019.08.005.

Download references

Acknowledgements

The authors are highly grateful to the National Natural Science Foundation of China (51571002), Beijing Natural Science Foundation (2172008), Program of Beijing City and Beijing University of Technology, Evaluation Research for the Performance of Tapes (GH-201809CG005), General Program of Science and Technology, Development Project of Beijing Municipal Education Commission of China (No. KM201810005010), Project of Advanced Discipline (No. PXM2019-014204-500031) and the Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhawa, Pakistan. Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zarbad Shah or Hongli Suo.

Ethics declarations

Conflict of interest

The Authors confirm that the content of this manuscript has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, K., Shah, Z., Arshad, T. et al. Electrical, dielectric and photocatalytic applications of iron-based nanocomposites. Appl. Phys. A 126, 149 (2020). https://doi.org/10.1007/s00339-020-3302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3302-5

Keywords

Navigation