Skip to main content
Log in

The dielectric and magnetic properties of RTV-silicon rubber Ni–Cr ferrite composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, polymeric composites based on room-temperature vulcanized (RTV) silicon rubber incorporated with different NiCr0.2Fe1.8O4 (NCF) content are prepared. The results indicate the well dispersion of various micron-sized particles of NCF with low agglomerations. The decrease in the density is the most advantage property that allows us to obtain the light magnetic material for industrial applications. It is shown that the rubber occupies the porous and defects between NCF particles. It is found that dielectric constant is enhanced with RTV content and decreases with increasing selected frequency for all samples. The electrical conductivity of composite is enhanced with both RTV content and the heat treatment temperature of composites. The saturation magnetization is strongly dependent on NCF content in RTV matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Gao, Z. Yan, J.L. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y.C. Li, H. Wang, S.H. Kim, T.E. Mallouk, D. Wang, Nat. Mater. 18(4), 384–389 (2019). https://doi.org/10.1038/s41563-019-0305-8

    Article  ADS  Google Scholar 

  2. A.H. El-Sayed, A. Abdelhamed, M.S. Masoud, M.A. Hamad, Synth. Met. 245, 202–208 (2018). https://doi.org/10.1016/j.synthmet.2018.09.002

    Article  Google Scholar 

  3. A.H. El-Sayed, Y. Hossien, M.A. Hamad, Eur. Phys. J. Plus 134, 415 (2019). https://doi.org/10.1140/epjp/i2019-12793-8

    Article  Google Scholar 

  4. Y.C. Lu, J. Yu, J. Huang, S. Yu, X. Zeng, R. Sun, C.P. Wong, Appl. Phys. Lett. 114, 233901 (2019). https://doi.org/10.1063/1.5093968

    Article  ADS  Google Scholar 

  5. A.H. El-Sayed, O.M. Hemeda, A. Tawfik, M.A. Hamad, AIP Adv. 5, 107131 (2015). https://doi.org/10.1063/1.4934790

    Article  ADS  Google Scholar 

  6. K.K. Patel, R. Purohit, Sens. Actuators A 285, 17–24 (2019). https://doi.org/10.1016/j.sna.2018.10.049

    Article  Google Scholar 

  7. S.P. Finner, T. Schilling, P. van der Schoot, Phys. Rev. Lett. 122, 097801 (2019). https://doi.org/10.1103/PhysRevLett.122.097801

    Article  ADS  Google Scholar 

  8. A.H. El-Sayed, F. El-Shamy, Y. Hossien, M.A. Hamad, J. Supercond. Nov. Magn. 30(10), 2927–2931 (2017). https://doi.org/10.1007/s10948-017-4084-7

    Article  Google Scholar 

  9. M.A. Hamad, A.H. El-Sayed, O.M. Hemeda, A. Tawfik, Mater. Res. Express 3(3), 036104 (2016). https://doi.org/10.1088/2053-1591/3/3/036104

    Article  ADS  Google Scholar 

  10. A.H. El-Sayed, O.M. Hemeda, A. Tawfik, M.A. Hamad, J. Supercond. Nov. Magn. 29(9), 2451–2453 (2016). https://doi.org/10.1088/2053-1591/3/3/036104

    Article  Google Scholar 

  11. A. Tawfik, O.M. Hemeda, A.H. El-Sayed, M.A. Hamad, J. Supercond. Nov. Magn. 29, 2085 (2016). https://doi.org/10.1007/s10948-016-3518-y

    Article  Google Scholar 

  12. K.R. Mahmoud, O.M. Hemeda, T. Sharshar, M.A. Hamad, J. Supercond. Nov. Magn. 30, 3143–3154 (2017). https://doi.org/10.1007/s10948-017-4126-1

    Article  Google Scholar 

  13. O.M. Hemeda, A.H. El-Sayed, A. Tawfik, M.A. Hamad, Mater. Res. Express 3(7), 075302 (2016). https://doi.org/10.1088/2053-1591/3/7/075302

    Article  ADS  Google Scholar 

  14. B.I. Salem, O.M. Hemeda, S.F. Mansour, M.A. Hamad, Appl. Phys. A. 124, 621 (2018). https://doi.org/10.1007/s00339-018-2029-z

    Article  ADS  Google Scholar 

  15. O.M. Hemeda, A. Tawfik, A.M. Dorgham, M.A. Hamad, Appl. Phys. A 125(5), 371 (2019). https://doi.org/10.1007/s00339-019-2666-x

    Article  ADS  Google Scholar 

  16. O.M. Hemeda, K.R. Mahmoud, T. Sharshar, M. Elsheshtawy, M.A. Hamad, J. Magn. Magn. Mater. 429, 124 (2017). https://doi.org/10.1016/j.jmmm.2017.01.018

    Article  ADS  Google Scholar 

  17. A.H. El-Sayed, O.M. Hemeda, A. Tawfik, M.A. Hamad, J. Magn. Magn. Mater. 402, 105 (2016). https://doi.org/10.1016/j.jmmm.2015.11.051

    Article  ADS  Google Scholar 

  18. A.H. El-Sayed, O.M. Hemeda, M.A. Hamad, A.M. Mohamed, J. Supercond. Nov. Magn. (2019). https://doi.org/10.1007/s10948-019-05232-3

    Article  Google Scholar 

  19. A.H. El-Sayed, O.M. Hemeda, M.A. Hamad, A.M. Mohamed, Eur. Phys. J. Plus 134, 227 (2019). https://doi.org/10.1140/epjp/i2019-12751-6

    Article  Google Scholar 

  20. A.H. El-Sayed, M.A. Hamad, Ph. Transit. 92(6), 517–524 (2019). https://doi.org/10.1080/01411594.2019.1597096

    Article  Google Scholar 

  21. N.D. Sharma, M.K. Verma, N. Choudhary, S. Sharma, D. Singh, Mater. Sci. Technol. 35(4), 448–455 (2019). https://doi.org/10.1080/02670836.2019.1569836

    Article  Google Scholar 

  22. O.M. Hemeda, M.I. Abdel-Ati, B.I. Salem, A.M.A. Henaish, F.S. El-Sbakhy, Eur. Phys. J. Plus 133, 531 (2018). https://doi.org/10.1140/epjp/i2018-12346-9

    Article  Google Scholar 

  23. A.R. Chavan, M.V. Shisode, P.G. Undre, K.M. Jadhav, Appl. Phys. A 125, 472 (2019). https://doi.org/10.1007/s00339-019-2768-5

    Article  ADS  Google Scholar 

  24. S.H. Lee, S.J. Yoon, G.J. Lee, H.S. Kim, C.H. Yo, K. Ahn, D.H. Lee, K.H. Kim, Mater. Chem. Phys. 61(2), 147–152 (1999). https://doi.org/10.1016/S0254-0584(99)00136-4

    Article  Google Scholar 

  25. Y. Kinemuchi, K. Ishizaka, H. Suematsu, W. Jiang, K. Yatsui, Thin Solid Films 407(1–2), 109–113 (2002). https://doi.org/10.1016/S0040-6090(02)00021-4

    Article  ADS  Google Scholar 

  26. I.S. Lyubutin, C.R. Lin, S.S. Starchikov, A.O. Baskakov, N.E. Gervits, K.O. Funtov, Y.T. Tseng, W.J. Lee, K.Y. Shih, J.S. Lee, Inorg. Chem. 56(20), 12469–12475 (2017). https://doi.org/10.1021/acs.inorgchem.7b01935

    Article  Google Scholar 

  27. O.M. Hemeda, D.M. Hemeda, M.Z. Said, Mech. Time Depend. Mater. 7(3–4), 251–268 (2003). https://doi.org/10.1023/B:MTDM.0000007186.44204.e7

    Article  ADS  Google Scholar 

  28. S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, S.J. Shukla, K.M. Jadhav, Appl. Phys. A 95, 429 (2009). https://doi.org/10.1142/S021797920905225X

    Article  ADS  Google Scholar 

  29. J. Zhang, H. Zhang, H. Wang, F. Chen, Y. Zhao, Polym. Compos. 40(3), 1078–1086 (2019). https://doi.org/10.1002/pc.24802

    Article  Google Scholar 

  30. S.A. Mansour, M.A. El-Salam, A.H. Moharram, M. Hussein, F.A.M. Al-Agel, J. Appl. Polym. Sci. 126(2), 593–600 (2012). https://doi.org/10.1002/app.36841

    Article  Google Scholar 

  31. K. Kanamori, Int. Polym. Sci. Technol. 13(2), T-4 (1986)

    MathSciNet  Google Scholar 

  32. S.A. Seyedmehd, H. Zhang, J. Zhu, Appl. Surf. Sci. 258(7), 2972–2976 (2012). https://doi.org/10.1016/j.apsusc.2011.11.020

    Article  ADS  Google Scholar 

  33. X.L. Gong, X.Z. Zhang, P.Q. Zhang, Polym. Test. 24, 669–676 (2005). https://doi.org/10.1016/j.polymertesting.2005.03.015

    Article  Google Scholar 

  34. C. Morari, I. Balan, J. Pintea, E. Chitanu, I. Iordache, Prog. Electromagn. Res. M 21, 93–104 (2011). https://doi.org/10.2528/PIERM11080406

    Article  Google Scholar 

  35. S.F. Mansour, O.M. Hemeda, S.I. El-Dek, B.I. Salem, J. Magn. Magn. Mater. 420, 7–18 (2016)

    Article  ADS  Google Scholar 

  36. B. Choudhury, A. Choudhury, Mater. Chem. Phys. 131(3), 666–671 (2012). https://doi.org/10.1016/j.matchemphys.2011.10.032

    Article  Google Scholar 

  37. O.M. Hemeda, M.A. Hamad, A.M.A. Henaish, Materi. Res. Express. 5(7), 076102 (2018). https://doi.org/10.1088/2053-1591/aacef3

    Article  ADS  Google Scholar 

  38. M.S. Zakerhamidi, A. Ghanadzadeh, M. Moghadam, Chem. Sci. Trans. 1(1), 1–8 (2012). https://doi.org/10.7598/cst2012.118

    Article  Google Scholar 

  39. K.A. Malini, E.M. Mohammed, S. Sindhu, P. Kurian, M.R. Anantharaman, Plast. Rubber Comp. 31(10), 449–457 (2002). https://doi.org/10.1179/146580102225006396

    Article  Google Scholar 

  40. X. Wang, Z. Xia, B. Yuan, H. Zhou, Z. Li, N. Chen, Mater. Des. 51, 287–292 (2013). https://doi.org/10.1016/j.matdes.2013.04.007

    Article  Google Scholar 

  41. Q. Xiao, X. Tan, L. Ji, J. Xue, Synth. Met. 157(18–20), 784–791 (2007). https://doi.org/10.1016/j.synthmet.2007.08.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Hamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemeda, O.M., Henaish, A.M.A., Salem, B.I. et al. The dielectric and magnetic properties of RTV-silicon rubber Ni–Cr ferrite composites. Appl. Phys. A 126, 121 (2020). https://doi.org/10.1007/s00339-020-3297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3297-y

Keywords

Navigation