Skip to main content
Log in

Synthesis of cesium tungsten bronze by a solution-based chemical route and the NIR shielding properties of cesium tungsten bronze thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, hexagonal Cs0.32WO3 powders were synthesized by a simple solution-based chemical route. The experiment can be performed within a relatively short time and can easily produce large amounts of hexagonal Cs0.32WO3 powders. The CsxWO3 powders as synthesized and after heat treatment were characterized by X-ray diffraction, scanning electron microscopy, differential thermal and thermogravimetric analysis and Fourier transform infrared spectroscopy. CsxWO3 thin films were deposited by an electron beam evaporation method from sintered Cs0.32WO3 powders as the targets. The CsxWO3 films were annealed at different temperatures under Ar and Ar/H2 atmospheres. The effects of annealing on the microstructure, morphology and near-infrared (NIR) shielding properties of the Cs0.32WO3 films are discussed. The results show that the Cs0.32WO3 thin film specimen annealed for 500 °C in an Ar/H2 atmosphere has the highest transmittance (80%) in the visible light region and the lowest transmittance (42%) in the NIR region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Qin, D. Zhang, D. Zhao, L. Wang, K. Zheng, Chem. Commun. 46, 2304 (2010)

    Article  Google Scholar 

  2. B. Baloukas, J.M. Lamarre, L. Martinu, Sol. Energy Mater. Sol. Cells 95, 807 (2011)

    Article  Google Scholar 

  3. L. Long, H. Ye, Y. Gao, R. Zou, Appl. Energy 136, 89 (2014)

    Article  Google Scholar 

  4. C.G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G.A. Niklasson, D. Rönnow, M. Strømme Mattsson, M. Veszelei, G. Vaivars, Sol. Energy 63, 199 (1998)

  5. R.D. Rauh, Electrochim Acta 44, 3165 (1999)

    Article  Google Scholar 

  6. P. Tao, A. Viswanath, L.S. Schadler, B.C. Benicewicz, R.W. Siegel, ACS Appl. Mater Interfaces 3, 3658 (2011)

    Article  Google Scholar 

  7. Y. Okuhara, T. Kato, H. Matsubara, N. Isu, M. Takata, Thin Solid Films 519, 2280 (2011)

    Article  ADS  Google Scholar 

  8. H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, Appl. Surf. Sci. 258, 8564 (2012)

    Article  ADS  Google Scholar 

  9. K. Adachi, T. Asahi, J. Mater. Res. 27, 965 (2012)

    Article  ADS  Google Scholar 

  10. M.R. Skokan, W.G. Moulton, R.C. Morris, Phys. Rev. B 20, 3670 (1979)

    Article  ADS  Google Scholar 

  11. Y. Sato, M. Terauchi, M. Mukai, T. Kaneyama, K. Adachi, Ultramicroscopy 111, 1381 (2011)

    Article  Google Scholar 

  12. Y. Sato, M. Terauchi, K. Adachi, J. Appl. Phys. 112, 074308 (2012)

    Article  ADS  Google Scholar 

  13. J.D. Guo, M.S. Whittingham, Int. J. Mod. Phys. B 07, 4145 (1993)

    Article  ADS  Google Scholar 

  14. B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, J. Solid State Chem. 29, 429 (1979)

    Article  ADS  Google Scholar 

  15. C. Guo, S. Yin, H. Yu, S. Liu, Q. Dong, T. Goto, Z. Zhang, Y. Li, T. Sato, Nanoscale 5, 6469 (2013)

    Article  ADS  Google Scholar 

  16. F. Shi, J.X. Liu, X.L. Dong, Q. Xu, J.Y. Luo, H.C. Ma, J. Mater. Sci. Technol. 30, 342 (2014)

    Article  Google Scholar 

  17. H. Takeda, K. Adachi, J. Am. Ceram. Soc. 90, 4059 (2007)

    Google Scholar 

  18. C.S. Guo, S. Yin, M. Yan, T. Sato, J. Mater. Chem. 21, 5099 (2011)

    Article  Google Scholar 

  19. J.X. Liu, F. Shi, X.L. Dong, Q. Xu, S. Yin, T. Sato, Mater. Charact. 84, 182 (2013)

    Article  Google Scholar 

  20. J.X. Liu, Y. Ando, X.L. Dong, F. Shi, S. Yin, K. Adachi, T. Chonan, A. Tanaka, T. Sato, J Solid State Chem. 183, 2456 (2010)

    Article  ADS  Google Scholar 

  21. J.-X. Liu, F. Shi, X.-L. Dong, S.-H. Liu, C.-Y. Fan, S. Yin, T. Sato, Powder Technol. 270, 329 (2015)

    Article  Google Scholar 

  22. J. Liu, J. Luo, F. Shi, S. Liu, C. Fan, Q. Xu, G. Shao, J. Solid State Chem. 221, 255 (2015)

    Article  ADS  Google Scholar 

  23. J. Liu, Q. Xu, F. Shi, S. Liu, J. Luo, L. Bao, X. Feng, Appl. Surf. Sci. 309, 175 (2014)

    Article  ADS  Google Scholar 

  24. H. Yang, Z. Ping, G. Niu, H. Jiang, Y. Long, Langmuir 15, 5382 (1999)

    Article  Google Scholar 

  25. C.-T. Hsieh, H. Teng, W.-Y. Chen, Y.-S. Cheng, Carbon 48, 4219 (2010)

    Article  Google Scholar 

  26. J.Y. Luo, S.Z. Deng, Y.T. Tao, F.L. Zhao, L.F. Zhu, L. Gong, J. Chen, N.S. Xu, J. Phys. Chem. C 113, 15877 (2009)

    Article  Google Scholar 

  27. C. Guo, S. Yin, Q. Dong, T. Sato, CrystEngComm 14, 7727 (2012)

    Article  Google Scholar 

  28. K. Adachi, Y. Ota, H. Tanaka, M. Okada, N. Oshimura, A. Tofuku, J. Appl. Phys. 114, 194304 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Hierarchical Green-Energy Materials (Hi-GEM) Research Center, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) and the Ministry of Science and Technology (MOST 107-3017-F-006 -003) in Taiwan. The authors are grateful for the financial support this work received from the Ministry of Science and Technology of Taiwan, R.O.C., under Grant no. NSC106-2221-E-006-073-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horng-Hwa Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PJ., Brahma, S., Lu, HH. et al. Synthesis of cesium tungsten bronze by a solution-based chemical route and the NIR shielding properties of cesium tungsten bronze thin films. Appl. Phys. A 126, 98 (2020). https://doi.org/10.1007/s00339-020-3291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3291-4

Keywords

Navigation