Skip to main content
Log in

Ultrasonic cavitation and acoustic streaming effects during liquid phase separation and dynamic solidification of ternary Al–Sn–Si immiscible alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrasonic melt treatment is an environmentally friendly and no-polluting external field technology and has great application potential in materials fabrication. Power ultrasound with different intensities was introduced into the liquid phase separation and solidification process of ternary Al-45%Sn-5%Si immiscible alloy to explore the effects of ultrasound on the formation of macro- and microstructure. It was found that the previously apparent macrosegregation caused by the large density difference between immiscible liquid (Al) and (Sn) phases was gradually reduced and even suppressed with the increase of ultrasonic amplitude. Meanwhile, the ultrasonic waves also significantly modified monotectic structures, within which (Al) phase transformed from coarse dendrites to refined equiaxed grains, and (Si) phase evolved from long strips to small blocks. The introduction of ultrasound weakened the texture of solidified structure, whereas the growth orientation relationship between monotectic (Al) and (Si) phases remained unchanged. The theoretical analysis and calculation results indicated that ultrasonic cavitation and acoustic streaming were the dominant effects to modulate the macro- and microstructural evolution. This would improve the exploiting and utilization of immiscible alloys by ultrasonic processing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.R. Kotadia, E. Doernberg, J.B. Patel, Z. Fan, R. Schmid-Fetzer, Metall. Mater. Trans. A 40, 2202–2211 (2009)

    Article  Google Scholar 

  2. D.Y. Zang, H.P. Wang, F.P. Dai, D. Langevin, B. Wei, Appl. Phys. A 102, 141–145 (2011)

    Article  ADS  Google Scholar 

  3. I. Kaban, M. Köhler, L. Ratke, R. Nowak, N. Sobczak, N. Mattern, J. Eckert, A.L. Greer, S.W. Sohn, D.H. Kim, J. Mater. Sci. 47, 8360–8366 (2012)

    Article  ADS  Google Scholar 

  4. T.A. Costa, M. Dias, E.S. Freitas, L.C. Casteletti, J. Alloy. Compd. 689, 767–776 (2016)

    Article  Google Scholar 

  5. U. Joshi, S. Vadakkemadam, D.G. Eskin, H.B. Nadendla, Metall. Mater. Trans. A 46, 2862–2869 (2015)

    Article  Google Scholar 

  6. D.Q. Wan, Rare Met. 34, 560–563 (2015)

    Article  Google Scholar 

  7. N. Yan, W.L. Wang, S.B. Luo, L. Hu, B. Wei, Appl. Phys. A 113, 763–770 (2013)

    Article  ADS  Google Scholar 

  8. W. Zhai, H.M. Liu, B. Wei, Mater. Lett. 141, 221–224 (2015)

    Article  Google Scholar 

  9. G.I. Eskin, D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts, 2nd edn. (CRC Press book, Boca Raton, 2019)

  10. J.M. Liu, W.H. Wu, W. Zhai, B. Wei, Ultrason. Sonochem. 54, 281–298 (2019)

    Article  Google Scholar 

  11. R.R. Chen, D.S. Zheng, J.J. Guo, T.F. Ma, H.S. Ding, Y.Q. Su, H.Z. Fu, Mat. Sci. Eng. A 653, 23–26 (2016)

    Article  Google Scholar 

  12. B. Nagasivamuni, G. Wang, D.H. Stjohn, M.S. Dargusch, J. Cryst. Growth 495, 20–28 (2018)

    Article  ADS  Google Scholar 

  13. Q. Wang, X.G. Chen, L. Zhu, J.C. Yan, Z.W. Lai, P.Z. Zhao, J.C. Bao, G.C. Lv, C. You, X.Y. Zhou, J. Zhang, Y.T. Li, Ultrason. Sonochem. 34, 947–952 (2017)

    Article  Google Scholar 

  14. I. Kaban, M. Köhler, L. Ratke, W. Hoyer, L. Greer, Acta Mater. 59, 6880–6889 (2011)

    Article  Google Scholar 

  15. J. Guo, Y. Liu, J. Jia, Y. Su, H. Ding, J. Zhao, X. Xue, Scripta Mater. 45, 1197–1204 (2001)

    Article  Google Scholar 

  16. N.A. Belov, T.K. Akopyan, I.S. Gershman, O.O. Gershman Stolyarova, A.O. Yakovlevaet, J. Alloy. Compd. 695, 2730–2739 (2017)

  17. F. Bertelli, N. Cheung, I.L. Ferreira, A. Garcia, J. Chem. Thermodyn. 98, 9–20 (2016)

    Article  Google Scholar 

  18. W. Zhai, B.J. Wang, H.M. Liu, L. Hu, B. Wei, Sci. Rep. 6, 36718 (2016)

    Article  ADS  Google Scholar 

  19. S. Absar, P. Pasumarthi, H. Choi, J. Manuf. Process 28, 515–522 (2017)

    Article  Google Scholar 

  20. J.C. Chen, Acoustics Principle (Science press, Beijing, 2012), p. 828

    Google Scholar 

  21. H. Huang, D. Shu, Y. Fu, J. Wang, B. Sun, Ultrason. Sonochem. 21, 1275–1278 (2014)

    Article  Google Scholar 

  22. W.W. Xu, I. Tzanakis, P. Srirangam, W.U. Mirihanage, D.G. Eskin, A.J. Bodey, P.D. Lee1, Ultrason. Sonochem. 31, 355–361 (2016)

  23. D.G. Eskin, Mater. Sci. Tech. 33, 636–645 (2016)

    Article  Google Scholar 

  24. W.F. Gale, T.C. Totemeir, Smithells metals reference book, 8th edn. (Elsevier Butterworth-Heinemann, Oxford, 2004)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Grant Nos. 51922089, 51727803 and 51972275) and Key Research Plan in Shaanxi Province (Grant No. 2018GY-104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B.J., Wu, W.H., Liu, J.M. et al. Ultrasonic cavitation and acoustic streaming effects during liquid phase separation and dynamic solidification of ternary Al–Sn–Si immiscible alloy. Appl. Phys. A 126, 112 (2020). https://doi.org/10.1007/s00339-020-3279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3279-0

Keywords

Navigation