Skip to main content
Log in

Oxygen concentration dependence of microstructure formed on Ni by backward pulsed laser deposition

  • S.I. : Current State-Of-The-Art in Laser Ablation
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the automotive industry, direct joining between resin and metal without additional material is expected due to a growing need for hybrid structures composed of resin and metal. Roughening the metal surface before joining can improve the adhesion with the resin, and forming a microstructure on the metal surface by backward pulsed laser deposition could be a useful method. In the present study, we investigated the dependence of microstructure on the oxygen concentration in the ambient gas during surface processing for controlling the morphology of the microstructure. In the experiments, the oxygen concentration in the ambient gas composed of nitrogen and oxygen was controlled under atmospheric pressure, and microstructure characteristics, such as the shape and hardness, were analyzed. As a result, it was demonstrated that the formation range of the microstructure was constant regardless of the oxygen concentration, whereas a rougher microstructure was formed at higher oxygen concentrations, and a dense, flat microstructure was formed at lower oxygen concentrations. These results implied that the oxidation between the nanoparticles in the laser-induced plume and the ambient gas affects the mobility of the nanoparticles on the metal surface, leading to a transmutation in the morphology of the microstructure. Finally, it was shown that it is important to reduce the surface mobility of nanoparticles, such as processing under high oxygen concentration, to form a microstructure that improves adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Grujicic, V. Sellappan, M.A. Omar, N. Seyr, A. Obieglo, M. Erdmann, J. Holzleitner, J. Mater. Process. Technol. 197, 363 (2008)

    Article  Google Scholar 

  2. M.-Y. Lyu, T.G. Choi, Int. J. Precis. Eng. Manuf. 16, 213 (2015)

    Article  Google Scholar 

  3. B. Huang, L. Sun, L. Li, L. Zhang, Y. Lin, J. Che, J. Mater. Process. Technol. 249, 407 (2017)

    Article  Google Scholar 

  4. E. Rodríguez-Vidal, C. Sanz, C. Soriano, J. Leunda, G. Verhaeghe, J. Mater. Process. Technol. 229, 668 (2016)

    Article  Google Scholar 

  5. G. Lucchetta, F. Marinello, P.F. Bariani, CIRP Ann. Manuf. Technol. 60, 559 (2011)

    Article  Google Scholar 

  6. M.M. Sharma, T.J. Eden, B.T. Golesich, J. Therm. Spray Technol. 24, 410 (2014)

    Article  ADS  Google Scholar 

  7. M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, M. Fujita, Vacuum 80, 1346 (2006)

    Article  ADS  Google Scholar 

  8. A.V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, Nanoscale Res. Lett. 5, 454 (2010)

    Article  ADS  Google Scholar 

  9. A.Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2013)

    Article  ADS  Google Scholar 

  10. F. Ruffino, P. Maugeri, G. Cacciato, M. Zimbone, M.G. Grimaldi, Phys. E Low Dimens. Syst. Nanostruct. 83, 215 (2016). https://doi.org/10.1016/j.physe.2016.05.013

    Article  ADS  Google Scholar 

  11. J.J. Lin, S. Mahmood, T.L. Tan, S.V. Springham, P. Lee, R.S. Rawat, Nanotechnology 18, 115617 (2007)

    Article  ADS  Google Scholar 

  12. J.J. Lin, S. Mahmood, T. Zhang, S.M. Hassan, T. White, R.V. Ramanujan, P. Lee, R.S. Rawat, J. Phys. D. Appl. Phys. 40, 2548 (2007)

    Article  ADS  Google Scholar 

  13. J. Haubrich, K. Schulze, J. Hausmann, Euro Hybrid Mater. Struct. 2014 (2014). https://elib.dlr.de/91720/

  14. K. Schulze, J. Hausmann, S. Heilmann, B. Wielage, Adhesion and degradation of well-designed titanium-PEEK interfaces within Titanium-CF/PEEK laminates, in19th International Conference on Composite materials (2013)

  15. N.G. Semaltianos, W. Perrie, V. Vishnyakov, R. Murray, C.J. Williams, S.P. Edwardson, G. Dearden, P. French, M. Sharp, S. Logothetidis, K.G. Watkins, Mater. Lett. 62, 2165 (2008)

    Article  Google Scholar 

  16. S. Singh, M. Argument, Y.Y. Tsui, R. Fedosejevs, J. Appl. Phys. 98, 113520 (2005)

    Article  ADS  Google Scholar 

  17. T. Szörényi, Z. Geretovszky, Thin Solid Films 484, 165 (2005)

    Article  ADS  Google Scholar 

  18. A. Pereira, A. Cros, P. Delaporte, W. Marine, M. Sentis, Appl. Surf. Sci. 208–209, 417 (2003)

    Article  ADS  Google Scholar 

  19. A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, M. Sentis, Appl. Phys. A 79, 1433 (2004)

    Article  ADS  Google Scholar 

  20. A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A.L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, T. Sauvage, Thin Solid Films 453–454, 16 (2004)

    Article  Google Scholar 

  21. A. Pereira, P. Delaporte, M. Sentis, W. Marine, A.L. Thomann, C. Boulmer-Leborgne, J. Appl. Phys. 98, 064902 (2005)

    Article  ADS  Google Scholar 

  22. K. Koda, W. Kobayashi, H. Imai, M. Tsukamoto, Appl Phys A Mater Sci Process. (2018). https://doi.org/10.1007/s00339-018-1699-x

    Article  Google Scholar 

  23. K. Koda, K. Takenaka, M. Tsukamoto, Appl. Surf. Sci. 485 (2019)

  24. Z. Zhang, M.G. Lagally, Science 276, 377–383 (1997)

    Article  Google Scholar 

  25. A.V. Bulgakov, N.M. Bulgakova, J. Phys. D Appl. Phys. 31, 693 (1998)

    Article  ADS  Google Scholar 

  26. H. Gamsjager, J. Bugajski, T. Gajda, R. Lemire, W. Preis, Chem. Therm. 6, 44 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Koda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koda, K., Tsukamoto, M. Oxygen concentration dependence of microstructure formed on Ni by backward pulsed laser deposition. Appl. Phys. A 126, 114 (2020). https://doi.org/10.1007/s00339-020-3278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3278-1

Keywords

Navigation