Skip to main content

Advertisement

Log in

Sputtered chromium nitride/carbon nanotubes hybrid structure for electrochemical capacitors

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 18 March 2021

This article has been updated

Abstract

Hybrid materials based on transition metal nitrides and carbon nanostructures are attracting intention for high-performance electrochemical energy storage systems. In this work, vertically aligned carbon nanotubes (CNTs) were grown over silicon substrate, followed by direct current plasma-sputtered deposition of chromium nitride (CrN) for different deposition times. The CNTs@ CrN electrodes exhibit vertically aligned cauliflower morphology with different degrees of dispersion on the substrate and were tested as electrodes for electrochemical capacitors (ECs). The areal capacitance of the CNTs@ CrN, as measured in 0.5 M H2SO4 electrolyte, was as high as 156.4 mF cm−2 at a scan rate of 5 mV s−1 with an excellent electrochemical retention of 90% over 10,000 cycles. Furthermore, the areal capacitance was found to increase with CrN thickness increase over the CNTs. This work demonstrates the beneficial use of CNT as template for transition metal nitride deposition and highlights CrN as a promising competitor to other transition metal nitrides already reported for ECs with similar structural morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    Article  ADS  Google Scholar 

  2. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)

    Article  ADS  Google Scholar 

  3. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)

    Article  ADS  Google Scholar 

  4. J.F.M. Oudenhoven, L. Baggetto, P.H.L. Notten, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011)

    Article  Google Scholar 

  5. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  ADS  Google Scholar 

  6. S. Sartori, F. Cuevas, M. Latroche, Metal hydrides used as negative electrode materials for Li-ion batteries. Appl. Phys. A 122, 135 (2016)

    Article  ADS  Google Scholar 

  7. G.G. Prasad, N. Shetty, S. Thakur, K.B. Rakshitha, Bommegowda, , Supercapacitor technology and its applications: a review. IOP Conf. Ser.: Mater. Sci. Eng. 561, 012105 (2019)

    Article  Google Scholar 

  8. H. Jiang, P.S. Lee, C. Li, 3D carbon based nanostructures for advanced supercapacitor. Energy Environ. Sci. 6, 41–53 (2013)

    Article  Google Scholar 

  9. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013)

    Article  ADS  Google Scholar 

  10. A. Wang, X. Zhou, T. Qian, C. Yu, S. Wu, J. Shen, Supercapacitors based on highly dispersed polypyrrole-reduced graphene oxide composite with a folded surface. Appl. Phys. A 120, 693–698 (2015)

    Article  ADS  Google Scholar 

  11. A. Achour, J.B. Ducros, R.L. Porto, M. Boujtita, E. Gautron, L. Le Brizoual, T. Brousse, Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy 7, 104–113 (2014)

    Article  Google Scholar 

  12. N. Ouldhamadouche, A. Achour, R. Lucio-Porto, M. Islam, S. Solaymani, A. Arman, A. Ahmadpourian, H. Achour, L. Le Brizoual, M.A. Djouadi, T. Brousse, Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors. J. Mater. Sci. Technol. 34, 976–982 (2018)

    Article  Google Scholar 

  13. T.M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor, K. Armstrong, D. Guay, D. Pech, Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 10, 288–294 (2014)

    Article  Google Scholar 

  14. M.M. Sk, C.Y. Yue, R.K. Jena, Synthesis of graphene/vitamin C template-controlled polyaniline nanotubes composite for high performance supercapacitor electrode. Polymer 55, 798–805 (2014)

    Article  Google Scholar 

  15. Y. Lu, Z. Zhang, X. Liu, W. Wang, T. Peng, P. Guo, H. Sun, H. Yan, Y. Luo, NiCo2S4/carbon nanotube nanocomposites with a chain-like architecture for enhanced supercapacitor performance. Cryst. Eng. Comm. 18, 7696–7706 (2016)

    Article  Google Scholar 

  16. B. Wei, H. Liang, D. Zhang, Z. Wu, Z. Qi, Z. Wang, CrN thin films prepared by reactive DC magnetron sputtering for symmetric supercapacitors. J. Mater. Chem. A. 5, 2844–2851 (2017)

    Article  Google Scholar 

  17. B. Wei, G. Mei, H. Liang, Z. Qi, D. Zhang, H. Shen, Z. Wang, Porous CrN thin films by selectively etching CrCuN for symmetric supercapacitors. J. Power Sour. 385, 39–44 (2018)

    Article  ADS  Google Scholar 

  18. E. Haye, A. Achour, A. Guerra, F. Moulaï, T. Hadjersi, R. Boukherroub, A. Panepinto, T. Brousse, J.J. Pireaux, S. Lucas, 2019 Achieving on chip micro-supercapacitors based on CrN deposited by bipolar magnetron sputtering at glancing angle Electrochim. Acta 324, 134890 (2019)

    Google Scholar 

  19. L. Zhao, L. Wang, P. Yu, D. Zhao, C. Tian, H. Feng, J. Ma, H. Fu, A chromium nitride/carbon nitride containing graphitic carbon nanocapsule hybrid as a Pt-free electrocatalyst for oxygen reduction. Chem. Commun. 51, 12399–12402 (2015)

    Article  Google Scholar 

  20. H. Liu, W. He, C. Luo, Effect of buffer layer nature on multiwall carbon nanotube growth rate by PECVD. Diam. Relat. Mater 94, 81–87 (2019)

    Article  ADS  Google Scholar 

  21. P. Hones, R. Sanjines, F. Levy, Characterization of sputter-deposited chromium nitride thin films for hard coatings. Surf. Coat. Technol. 94, 398–402 (1997)

    Article  Google Scholar 

  22. M. Dinu, E.S.M. Mouele, A.C. Parau, A. Vladescu, L.F. Petrik, M. Braic, Enhancement of the corrosion resistance of 304 stainless steel by Cr–N and Cr(N, O) coatings. Coatings 8, 2–20 (2018)

    Article  Google Scholar 

  23. I. Milošev, H.-H. Strehblow, B. Navinšek, Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation. Thin Solid Films 303, 246–254 (1997)

    Article  ADS  Google Scholar 

  24. A. Lippitz, Th. Hübert, XPS investigations of chromium nitride thin films. Surf. Coat. Technol. 200, 250–253 (2005)

    Article  Google Scholar 

  25. A. Guerra, E. Haye, A. Achour, M. Harnois, T. Hadjersi, J.-F. Colomer, J.-J. Pireaux, S. Lucas, R. Boukherroub, High performance of 3D silicon nanowires array@CrN for electrochemical capacitors. Nanotechnology 31, 035407 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The research was financially supported by the Research Project of Hubei Natural Science Foundation, China (Project No.2018CFC876

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazhong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: one of the first author’s affiliation was not included.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., He, W., Wang, X. et al. Sputtered chromium nitride/carbon nanotubes hybrid structure for electrochemical capacitors. Appl. Phys. A 127, 108 (2021). https://doi.org/10.1007/s00339-020-04264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04264-0

Keywords

Navigation