Skip to main content
Log in

Numerical assessment of high-k spacer on symmetric S/D underlap GAA junctionless accumulation mode silicon nanowire MOSFET for RFIC design

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, inclusion of high-k spacer on symmetric underlap S/D junctionless silicon nanowire (SiNW) MOSFET is studied with an aim to analyze more realistic estimation of device performance in sub-20 nm. Comparison made with junctionless silicon nanowire shows that underlap high-k spacer significantly reduces off-current (≈ 64 mV/decade) and achieves high switching ratio > 109 due to fringing field which tends to increase effective channel length. Variation of different high-k spacer values (k = 3.9, 9.1, 11, 25, and 40) is examined and following static and Analog/RF performance is studied: potential, electric field, band diagram, transconductance, device efficiency, quality factor, capacitances, cutoff frequency (fT), intrinsic delay (τ), TFP, EDP, and GBP. It is observed that for high k = 40 (TiO2), device performance of junctionless SiNW MOSFET improves noticeably in comparison to low-k value. In addition, variation of S/D underlap spacer length (Lsp) along with spacer dielectric has also been done and results reveal that TiO2 with 10 nm spacer length is optimum value for upgraded analog/RF performance. Thus, symmetric S/D underlap junctionless SiNW MOSFET can be considered as a promising component in low-power switching component in RFIC circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source voltage (Vgs) and b threshold voltage (Vth) and subthreshold swing (SS) at Vds = 0.2 V for three device structures

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.T. Abuelmaatti, MOSFET scaling crisis and the evolution of nanoelectronic devices: the need for paradigm shift in electronics engineering education. Proc. Soc. Behav. Sci. 102, 432–437 (2013)

    Article  Google Scholar 

  2. N. Arora, MOSFET Models for VLSI Circuit Simulation Theory and Practice (Springer, New York, 1993).

    Book  Google Scholar 

  3. M. Bohr, MOS transistors: scaling and performance trends. Semicond. Intern. 18, 75–80 (1995)

    Google Scholar 

  4. M. Bohr, K. Mistry, Intel’s revolutionary 22 nm transistor technology. Intel website (2011)

  5. A. Kumar, N. Gupta, R. Chaujar, Analysis of novel transparent gate recessed channel (TGRC) MOSFET for improved analog behaviour. Microsyst. Technol. 22, 1–7 (2015)

    Google Scholar 

  6. A. Kranti, G.A. Armstrong, Engineering source/drain extension regions in nanoscale double gate (DG) SOI MOSFETs: analytical model and design considerations. Solid State Electron. 50(3), 437–447 (2006)

    Article  ADS  Google Scholar 

  7. T. Mikolajick, W.M. Weber, Silicon Nanowires: Fabrication and Applications. Anisotropic Nanomaterials (Springer, Berlin, 2015), pp. 1–25

    Google Scholar 

  8. G.L. Priya, N. Balamurugan, New dual material double gate junctionless tunnel FET: subthreshold modeling and simulation. AEU Intern. J. Electron. Commun. 99, 130–138 (2019)

    Article  Google Scholar 

  9. J. Xu, F. Ji, P. Lai, J. Guan, Influence of sidewall spacer on threshold voltage of MOSFET with high-k gate dielectric. Microelectron. Reliab. 48(2), 181–186 (2008)

    Article  Google Scholar 

  10. S. Sahay, M.J. Kumar, Physical insights into the nature of gate-induced drain leakage in ultrashort channel nanowire FETs. IEEE Trans. Electron Dev. 64(6), 2604–2610 (2017)

    Article  ADS  Google Scholar 

  11. K. Koley, A. Dutta, B. Syamal, S.K. Saha, C.K. Sarkar, Subthreshold analog/RF performance enhancement of underlap DG FETs with high-k spacer for low power applications. IEEE Trans. Electron. Dev. 60(1), 63–69 (2012)

    Article  ADS  Google Scholar 

  12. P.K. Pal, B.K. Kaushik, S. Dasgupta, Investigation of symmetric dual-k spacer trigate FinFETs from delay perspective. IEEE Trans. Electron. Dev. 61(11), 3579–3585 (2014)

    Article  ADS  Google Scholar 

  13. C. Shan, Y. Wang, X. Luo, M.-T. Bao, C.-H. Yu, F. Cao, A high-performance channel engineered charge-plasma-based MOSFET with high-k spacer. Superlattices Microstruct. 112, 499–506 (2017)

    Article  ADS  Google Scholar 

  14. D. Gracia, D. Nirmal, D.J. Moni, Impact of leakage current in germanium channel based DMDG TFET using drain-gate underlap technique. AEU Intern. J. Electron. Commun. 96, 164–169 (2018)

    Article  Google Scholar 

  15. L. Ansari, B. Feldman, G. Fagas, J.-P. Colinge, J.C. Greer, Simulation of junctionless Si nanowire transistors with 3 nm gate length. Appl. Phys. Lett. 97(6), 062105 (2010)

    Article  ADS  Google Scholar 

  16. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. Oneill, A. Blake, M. White, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  ADS  Google Scholar 

  17. B.-H. Lee, J. Hur, M.-H. Kang, T. Bang, D.-C. Ahn, D. Lee, K.-H. Kim, Y.-K. Choi, A vertically integrated junctionless nanowire transistor. Nano Lett. 16(3), 1840–1847 (2016)

    Article  ADS  Google Scholar 

  18. A. Garg, B. Singh, Y. Singh, A new trench double gate junctionless FET: a device for switching and analog/RF applications. AEU Intern. J. Electron. Commun. 118, 153140 (2020)

    Article  Google Scholar 

  19. C.-J. Su, T.-I. Tsai, Y.-L. Liou, Z.-M. Lin, H.-C. Lin, T.-S. Chao, Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels. IEEE Electron. Dev. Lett. 32(4), 521–523 (2011)

    Article  ADS  Google Scholar 

  20. T. Wang, L. Lou, C. Lee, A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Electron. Dev. Lett. 34(4), 478–480 (2013)

    Article  ADS  Google Scholar 

  21. D.-I. Moon, S.-J. Choi, J.P. Duarte, Y.-K. Choi, Investigation of silicon nanowire gate-all-around junctionless transistors built on a bulk substrate. IEEE Trans. Electron. Dev. 60(4), 1355–1360 (2013)

    Article  ADS  Google Scholar 

  22. R.D. Trevisoli, R.T. Doria, M. de Souza, M.A. Pavanello, Threshold voltage in junctionless nanowire transistors. Semicond. Sci. Technol. 26(10), 105009 (2011)

    Article  ADS  Google Scholar 

  23. I. SILVACO, ATLAS user’s manual. Santa Clara, CA, Ver, vol. 5, 2016

  24. N. Gupta, R. Chaujar, Implications of transport models on the analog performance of gate electrode workfunction engineered (GEWE) silicon nanowire MOSFET. pp. 1–5

  25. G. Iannaccone, G. Curatola, G. Fiori, Effective Bohm quantum potential for device simulators based on drift-diffusion and energy transport, in Simulation of semiconductor processes and devices. ed. by G. Wachutka, G. Schrag (Springer, Berlin, 2004), pp. 275–278

    Google Scholar 

  26. D.-I. Moon, S.-J. Choi, C.-J. Kim, J.-Y. Kim, J.-S. Lee, J.-S. Oh, G.-S. Lee, Y.-C. Park, D.-W. Hong, D.-W. Lee, Silicon nanowire all-around gate MOSFETs built on a bulk substrate by all plasma-etching routes. IEEE Electron. Dev. Lett. 32(4), 452–454 (2011)

    Article  ADS  Google Scholar 

  27. S. D. Suk, S.-Y. Lee, S.-M. Kim, E.-J. Yoon, M.-S. Kim, M. Li, C. W. Oh, K. H. Yeo, S. H. Kim, D.-S. Shin, High performance 5 nm radius twin silicon nanowire MOSFET (TSNWFET): Fabrication on bulk Si wafer, characteristics, and reliability. IEDM Tech. Dig. 717–720 (2005)

  28. A. Kumar, B. Tiwari, S. Singh, M.M. Tripathi, R. Chaujar, Radiation analysis of N-channel TGRC-MOSFET: an X-ray dosimeter. IEEE Trans. Electron. Dev. 65(11), 5014–5020 (2018)

    Article  ADS  Google Scholar 

  29. O. Moldovan, D. Jimenez, J.R. Guitart, F.A. Chaves, B. Iniguez, Explicit analytical charge and capacitance models of undoped double-gate MOSFETs. IEEE Trans. Electron. Dev. 54(7), 1718–1724 (2007)

    Article  ADS  Google Scholar 

  30. G. Doornbos, M. Passlack, Benchmarking of III–V n-MOSFET maturity and feasibility for future CMOS. IEEE Electron. Dev. Lett. 31(10), 1110–1112 (2010)

    Article  ADS  Google Scholar 

  31. N. Gupta, R. Chaujar, Optimization of high-k and gate metal workfunction for improved analog and intermodulation performance of Gate Stack (GS)-GEWE-SiNW MOSFET. Superlattices Microstruct. 97, 630–641 (2016)

    Article  ADS  Google Scholar 

  32. N. Gupta, A. Kumar, Assessment of high-k gate stack on sub-10nm SOI-FinFET for high-performance analog and RF applications perspective. ECS J. Solid State Sci. Technol. 9(12), 123009 (2020)

    Article  Google Scholar 

  33. N. Gupta, A. Kumar, R. Chaujar, Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET. J. Comput. Electron. 14, 798–810 (2015)

    Article  Google Scholar 

  34. N. Gupta, A. Kumar, R. Chaujar, Design considerations and capacitance dependent parametric assessment of gate metal engineered SiNW MOSFET for ULSI switching applications. Silicon 12, 1–10 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to MER Lab DTU, JIIT and ASH department (ADGITM) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Kumar, A. Numerical assessment of high-k spacer on symmetric S/D underlap GAA junctionless accumulation mode silicon nanowire MOSFET for RFIC design. Appl. Phys. A 127, 76 (2021). https://doi.org/10.1007/s00339-020-04234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04234-6

Keywords

Navigation