Skip to main content
Log in

MoS2/Ag2CO3 Z-scheme system with enhancing water splitting photocatalytic activity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel MoS2/Ag2CO3 Z-scheme system was synthesized by a simple chemical depositing method. The morphology and material components of MoS2/Ag2CO3 Z-scheme system were confirmed by scanning electron microscopy and Raman spectroscopy. Photoelectrochemical (PEC) tests demonstrated that the photocurrent density of MoS2/Ag2CO3 Z-scheme system can reach up to 13 µA/cm2 in 0.5 M Na2SO4 solution at a bias voltage of 0.5 V, which is 44 times more than pure MoS2, as well as 13 times higher than pure Ag2CO3. Lastly, the stability measurement of MoS2/Ag2CO3 Z-scheme system in 0.5 M Na2SO4 solution was carried out showing no obvious difference after processing 50 cycles. This work demonstrates that the MoS2/Ag2CO3 Z-scheme system may have a great potential application in photocatalytic water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  2. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 11, 401–425 (2007)

    Google Scholar 

  3. J. Yan, H. Wu, H. Chen, Y. Zhang, F. Zhang, S.F. Liu, Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Catal. B-Environ. 191, 130–137 (2016)

    Google Scholar 

  4. A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Surf. Sci. 422, 518–527 (2017)

    ADS  Google Scholar 

  5. H. Ma, B. Liu, B. Li, L. Zhang, Y.-G. Li, H.-Q. Tan, H.-Y. Zang, G. Zhu, Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 138, 5897–5903 (2016)

    Google Scholar 

  6. G. Yang, D. Chen, H. Ding, J. Feng, J.Z. Zhang, Y. Zhu, S. Hamid, D.W. Bahnemann, Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Appl. Catal. B- Environ. 219, 611–618 (2017)

    Google Scholar 

  7. M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito, Cobalt Ion-doped TiO2 photocatalyst response to visible light. J. Colloid Interf. Sci. 224, 202–204 (2000)

    ADS  Google Scholar 

  8. A. Masakazu, Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure. Appl. Chem. 72, 1787–1792 (2000)

    Google Scholar 

  9. D.H. Lee, Y.S. Cho, W.I. Yi, T.S. Kim, J.K. Lee, H.J. Jung, Metalorganic chemical vapor deposition of TiO2: N anatase thin film on Si substrate. Appl. Phys. Lett. 66, 815–816 (1995)

    ADS  Google Scholar 

  10. O. Teruhisa, M. Takahiro, M. Michio, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett. 32, 364–365 (2003)

    Google Scholar 

  11. M. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, T. Majima, Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 139, 13234–13242 (2017)

    Google Scholar 

  12. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)

    ADS  Google Scholar 

  13. Q. Xiang, D. Lang, T. Shen, F. Liu, Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl. Catal. B-Environ. 162, 196–203 (2015)

    Google Scholar 

  14. L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang, W. Cui, A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Appl. Catal. B-Environ. 183, 133–141 (2016)

    Google Scholar 

  15. M. Zhu, Z. Sun, M. Fujitsuka, T. Majima, Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew. Chem. Int. Edit. 57, 2160–2164 (2018)

    Google Scholar 

  16. J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, A review of direct Z-scheme photocatalysts. Small Methods. 1, 1700080 (2017)

    Google Scholar 

  17. W. Jiang, X. Zong, L. An, S. Hua, X. Miao, S. Luan, Y. Wen, F.F. Tao, Z. Sun, Consciously constructing heterojunction or direct Z-scheme photocatalysts by regulating electron flow direction. ACS Catal. 8, 2209–2217 (2018)

    Google Scholar 

  18. Y. Xiang, H. Zou, Y. Xu, Y. Deng, J. Zhu, W. Wu, Y. Zhou, Synthesis of direct Z-scheme ZnIn2S4@BiOBr-(110) heterojunction structure with high photocatalytic activity. J. Mater. Sci-Mater. El. 30, 19137–19146 (2019)

    Google Scholar 

  19. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007)

    ADS  Google Scholar 

  20. P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763–4770 (2012)

    Google Scholar 

  21. W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small. 9, 140–147 (2013)

    Google Scholar 

  22. J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8, 1701503 (2018)

    Google Scholar 

  23. M. Ritika, A. Kaur, S.K. Umar, S.K. Mehta, M. Kansal, A. Khan, H. Algarn, Enhanced solar light-mediated photocatalytic degradation of brilliant green dye in aqueous phase using BiPO4 nanospindles and MoS2/BiPO4 nanorods. J. Mater. Sci-Mater El. 30, 20741–20750 (2019)

    Google Scholar 

  24. Q. Zhang, M. Liu, S. Liu, L. Qiao, X. Hu, H. Tian, Z-scheme g-C3N4/BiVO4 photocatalysts with RGO as electron transport accelerator. J. Mater. Sci-Mater El. 31, 667–676 (2020)

    Google Scholar 

  25. W. Zhang, Z. Zhang, S. Kwon, F. Zhang, B. Stephen, K.K. Kim, R. Jung, S. Kwon, K.-B. Chung, W. Yang, Photocatalytic improvement of Mn-adsorbed g-C3N4. Appl. Catal. B-Environ. 206, 271–281 (2017)

    Google Scholar 

  26. D. Huang, Z. Li, G. Zeng, C. Zhou, W. Xue, X. Gong, X. Yan, S. Chen, W. Wang, M. Cheng, Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance. Appl. Catal. B-Environ. 240, 153–173 (2019)

    Google Scholar 

  27. Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H.-M. Cheng, B. Liu, Two-dimensional MoS2 confined CO(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018)

    Google Scholar 

  28. X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, T. Lin, M. Tang, L. Liao, A. Jiang, J. Sun, X. Meng, X. Chen, W. Lu, J. Chu, Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 27, 6575–6581 (2015)

    Google Scholar 

  29. Z. Liu, Y. Zhu, J.K. El-Demellawi, D.B. Velusamy, A.M. El-Zohry, O.M. Bakr, O.F. Mohammed, H.N. Alshareef, Metal halide perovskite and phosphorus doped g-C3N4 bulk heterojunctions for air-stable photodetectors. ACS Energy Lett. 4, 2315–2322 (2019)

    Google Scholar 

  30. Z. Li, X. Meng, Z. Zhang, Recent development on MoS2-based photocatalysis: a review. J. Photoch. Photobio. C. 35, 39–55 (2018)

    Google Scholar 

  31. J. Theerthagiri, R.A. Senthil, B. Senthilkumar, A. Reddy Polu, J. Madhavan, M. Ashokkumar, Recent advances in MoS2 nanostructured materials for energy and environmental applications—a review. J. Solid State Chem. 252, 43–71 (2017)

    ADS  Google Scholar 

  32. S. Lu, C. Li, Y.F. Zhao, Y.Y. Gong, L.Y. Niu, X.J. Liu, Tunable redox potential of nonmetal doped monolayer MoS2: first principle calculations. Appl. Surf. Sci. 384, 360–367 (2016)

    ADS  Google Scholar 

  33. E. Parzinger, B. Miller, B. Blaschke, J.A. Garrido, J.W. Ager, A. Holleitner, U. Wurstbauer, Photocatalytic stability of single- and few-layer MoS2. ACS Nano 9, 11302–11309 (2015)

    Google Scholar 

  34. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008)

    Google Scholar 

  35. Y. Liu, J. Kong, J. Yuan, W. Zhao, X. Zhu, C. Sun, J. Xie, Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem. Eng. J. 331, 242–254 (2018)

    Google Scholar 

  36. Y. Si, Y. Chen, M. Xu, X. Zhang, F. Zuo, Q. Yan, Synthesis and characterization of Z-scheme Ag2WO4/Bi2MoO6 heterojunction photocatalyst: enhanced visible-light photodegradation of organic pollutant. J. Mater. Sci-Mater El. 31, 1191–1199 (2020)

    Google Scholar 

  37. G. Dai, J. Yu, G. Liu, A new approach for photocorrosion inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity. J. Phys. Chem. C. 116, 15519–15524 (2012)

    Google Scholar 

  38. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017)

    Google Scholar 

  39. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014)

    Google Scholar 

  40. Y.-J. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, W. Bai, Y. Chen, Z.-T. Yu, Z. Zou, Liquid exfoliation of g-C3N4 nanosheets to construct 2D–2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl. Catal. B-Environ. 246, 120–128 (2019)

    Google Scholar 

  41. L. Tian, X. Yang, X. Cui, Q. Liu, H. Tang, Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance. Appl. Surf. Sci. 463, 9–17 (2019)

    ADS  Google Scholar 

  42. X. Wu, Y. Hu, Y. Wang, Y. Zhou, Z. Han, X. Jin, G. Chen, In-situ synthesis of Z-scheme Ag2CO3/Ag/AgNCO heterojunction photocatalyst with enhanced stability and photocatalytic activity. Appl. Surf. Sci. 464, 108–114 (2019)

    ADS  Google Scholar 

  43. T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, Review on Metal Sulphide-based Z-scheme Photocatalysts. ChemCatChem. 11, 1394–1411 (2019)

    Google Scholar 

  44. Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042–1063 (2018)

    Google Scholar 

  45. Z. Shi, J. Liu, H. Lan, X. Li, B. Zhu, J. Yang, Effect of CdS shell thickness on the photocatalytic properties of TiO2@CdS core–shell nanorod arrays. J. Mater. Sci-Mater. El. 30, 17682–17692 (2019)

    Google Scholar 

  46. T. Guo, Y. Wu, Y. Lin, X. Xu, H. Lian, G. Huang, J.Z. Liu, X. Wu, H.H. Yang, Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small. 14, 1702815 (2018)

    Google Scholar 

  47. T. Xiong, M. Wen, F. Dong, J. Yu, L. Han, B. Lei, Y. Zhang, X. Tang, Z. Zang, Three dimensional Z-scheme (BiO)2CO3/MoS2 with enhanced visible light photocatalytic NO removal. Appl. Catal. B-Environ. 199, 87–95 (2016)

    Google Scholar 

  48. S. Fu, W. Yuan, Y. Yan, H. Liu, X. Shi, F. Zhao, J. Zhou, Highly efficient visible-light photoactivity of Z-scheme MoS2/Ag2CO3 photocatalysts for organic pollutants degradation and bacterial inactivation. J. Environ. Manage. 252, 109654 (2019)

    Google Scholar 

  49. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)

    Google Scholar 

  50. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013)

    ADS  Google Scholar 

  51. J. Tian, R. Liu, Z. Liu, C. Yu, M. Liu, Boosting the photocatalytic performance of Ag2CO3 crystals in phenol degradation via coupling with trace N-CQDs. Chinese J. Catal. 38, 1999–2008 (2017)

    Google Scholar 

  52. S. Fang, C. Ding, Q. Liang, Z. Li, S. Xu, Y. Peng, D. Lu, In-situ precipitation synthesis of novel BiOCl/Ag2CO3 hybrids with highly efficient visible-light-driven photocatalytic activity. J. Alloys Compd. 684, 230–236 (2016)

    Google Scholar 

  53. C. Yu, L. Wei, W. Zhou, D.D. Dionysiou, L. Zhu, Q. Shu, H. Liu, A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation. Chemosphere 157, 250–261 (2016)

    ADS  Google Scholar 

  54. A. Reheman, K. Kadeer, K. Okitsu, M. Halidan, Y. Tursun, T. Dilinuer, A. Abulikemu, Facile photo-ultrasonic assisted reduction for preparation of rGO/Ag2CO3 nanocomposites with enhanced photocatalytic oxidation activity for tetracycline. Ultrason. Sonochem. 51, 166–177 (2019)

    Google Scholar 

  55. B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44, 92–96 (2013)

    ADS  Google Scholar 

  56. X. Ren, X. Qi, Y. Shen, G. Xu, J. Li, Z. Li, Z. Huang, J. Zhong, Synthesis of SnSe nanosheets by hydrothermal intercalation and exfoliation route and their photoresponse properties. Mater. Sci. Eng. B-Adv. 214, 46–50 (2016)

    Google Scholar 

  57. C. Chen, Y. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heterojunction nanocrystals. Dalton T. 40, 9566–9570 (2011)

    Google Scholar 

  58. C. Zhu, L. Zhang, B. Jiang, J. Zheng, P. Hu, S. Li, M. Wu, W. Wu, Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 377, 99–108 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants from Scientific Research Fund of Hunan Provincial Education Department (No. 18A059), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R91), and Science and Technology Program of Xiangtan (No. CXY-ZD20172002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Qi.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Liao, G., Qiao, H. et al. MoS2/Ag2CO3 Z-scheme system with enhancing water splitting photocatalytic activity. Appl. Phys. A 127, 29 (2021). https://doi.org/10.1007/s00339-020-04210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04210-0

Keywords

Navigation