Skip to main content

Advertisement

Log in

Synthesis of nanostructured hardystonite (HT) bioceramic coated on titanium alloy (Ti-6Al-4V) substrate and assessment of its corrosion behavior, bioactivity and cytotoxicity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bioceramic coatings have had a significant impact on the realm of biomaterials and medical devices in recent decades. In this study, synthesized hardystonite coating (Ca2ZnSi2O7) by sol–gel method was applied on titanium substrate (Ti-6Al-4V) using electrophoretic deposition method. XRD patterns and EDX result confirm the pure hardystonite phase structure. Transmission electron microscopy was confirmed the appeared round morphology and nanometer size of the synthesized hardystonite particles. Additionally SEM analysis was approved that the hardystonite coating is able to make a uniform and flawless apatite with needle-like and cauliflower forms during prolonged exposure to SBF. The Ringer’s solution Tafel test results were indicated that the corrosion resistance of twice-coated samples is increased by increasing the voltage to 50 Voltages so that the corrosion current density in the twice coated samples is less than the bare samples. In vitro evaluation by MTT assay was confirmed the viability of the bone marrow stem cells so that hardystonite increases the vitality and reproduction of stem cells at low concentration which makes the hardystonite coating a suitable candidate for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Emadi, S. Sadeghzade, F. Tavangarian, Evaluation of bioactivity and mechanical properties of silica-based ceramic for using in tissue engineering application. Materials Science and Technology 2019, MS and T 2019- Portland, United States, 1302–1309 (2019)

  2. L.L. Hench, Bioceramics. J. Am. Ceram. Soc. 81(7), 1705–1728 (1998)

  3. W. Xiaopeng, K. Fantao, H. Biqing, C. Yuyong, Electrochemical corrosion and bioactivity of Ti-Nb-Sn-hydroxyapatite composites fabricated by pulse current activated sintering. J. Mech. Behav. Biomed. Mater. 75, 222–227 (2017)

    Article  Google Scholar 

  4. L.L. Hench, J. Wilson, An introduction to bioceramics. World Sci. 1, 114–129 (1993)

  5. M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res. 57, 259–278 (1981)

    Google Scholar 

  6. H.A. El-Hamid, S.M. Abo-Naf, R.L. Elwan, Characterization, bioactivity investigation and cytotoxicity of borosilicate glass/dicalcium silicate composites. J. Non-Cryst. Solids 512, 25–32 (2019)

    Article  ADS  Google Scholar 

  7. C. Wu, J. Chang, W. Zhai, A novel hardystonite bioceramic: preparation and characteristics. Ceram. Int. 31(1), 27–31 (2005)

    Article  Google Scholar 

  8. C. Pontremoli, I. Izquierdo-Barba, G. Montalbano, M. Vallet-Regí, C. Vitale-Brovarone, S. Fiorilli, Strontium-releasing mesoporous bioactive glasses with anti-adhesive zwitterionic surface as advanced biomaterials for bone tissue regeneration. J. Colloid Interface Sci. 563, 92–103 (2020)

    Article  ADS  Google Scholar 

  9. G. Parande, V. Manakari, S. Prasadh, D. Chauhan, S. Rahate, R. Wong, M. Gupta, Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites. J. Mech. Behav. Biomed. Mater. 103, 103584 (2020)

    Article  Google Scholar 

  10. F.L. Nie, Y.F. Zheng, S.C. Wei, C. Hu, G. Yang, In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed. Mater. 5(6), 65015 (2010)

    Article  Google Scholar 

  11. C.-C. Shih, S.-J. Lin, Y.-L. Chen, Y.-Y. Su, S.-T. Lai, G.J. Wu, C.-F. Kwok, K.-H. Chung, The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. J. Biomed. Mater. Res. 52, 395–403 (2000)

    Article  Google Scholar 

  12. Erasmus, E. P. I., “Synthesis, testing and characterization of porous biocompatible porous bioactive glasses for clinical use.” PhD diss., 2017

  13. S.F.S. Shirazi et al., A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16(3), 033502 (2015)

    Article  Google Scholar 

  14. M. Kaur, K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 102, 844–862 (2019)

    Article  Google Scholar 

  15. S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23(4), 1065–1072 (2002)

    Article  Google Scholar 

  16. P. Bhattacharya, S. Neogi, Techniques for deposition of coatings with enhanced adhesion to bio-implants (Scrivener Publishing, Salem, 2017), pp. 235–256

    Google Scholar 

  17. M. Ganjali, A. Yazdanpanah, M. Mozafari, Laser deposition of nano coatings on biomedical implants. Emerg. Appl. Nanoparticles Arch. Nanostruct., 235–254 (2018)

  18. H. Gheysari, E. Karamian, Prepration and characterization of hydroxyapatite reinforced with hardystonite as a novel bio-nanocomposite for tissue engineering. NBM 2(1), 141–152 (2015)

    Google Scholar 

  19. I. Bagherpour, S.M. Naghib, A.H. Yaghtin, Synthesis and characterization of nanostructured hardystonite coating on stainless steel for biomedical application. IET Nanobiotechnol. 12(7), 895–902 (2018)

    Article  Google Scholar 

  20. A. Santos-Coquillat, M. Mohedano, E. Martinez-Campos, R. Arrabal, A. Pardo, E. Matykina, Bioactive multi-elemental PEO-coatings on titanium for dental implant applications. Mater. Sci. Eng. C 97, 738–752 (2019)

    Article  Google Scholar 

  21. P. Srinath, P. Abdul Azeem, K. Venugopal Reddy, Review on calcium silicate-based bioceramics in bone tissue engineering. Int. J. Appl. Ceram. Technol. 17(5), 2450–2464 (2020)

    Article  Google Scholar 

  22. K.E. Fox, N.L. Tran, T.A. Nguyen, T.T. Nguyen, P.A. Tran, Surface modification of medical devices at nanoscale-recent development and translational perspective. Bomater. Transl. Med., 163–189 (2019)

  23. A. Doostmohammadi, A. Monshi, R. Salehi, M.H. Fathi, Z. Golniya, A.U. Daniels, Bioactive glass nanoparticles with negative zeta potential. Ceram. Int. 37(7), 2311–2316 (2011)

    Article  Google Scholar 

  24. C. Garcia, S. Cere, A. Duran, Bioactive coatings prepared by sol–gel on stainless steel 316L. J. Non. Cryst. Solids 348, 218–224 (2004)

    Article  ADS  Google Scholar 

  25. H. Mohammadi, M. Hafezi, S. Hesaraki, M.M. Sepantafar, Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite for bone repair application. Mashhad Univ. Med. Sci. 2(3), 203–210 (2015)

    Google Scholar 

  26. C. Wu, Y. Ramaswamy, J. Chang, J. Woods, Y. Chen, H. Zreiqat, The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics. J. Biomed. Mater. Res. Part B Appl. Biomater. 87B(2), 346–353 (2008)

    Article  Google Scholar 

  27. B. Wegener, B. Sievers, S. Utzschneider et al., Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater. Sci. Eng. B 176(20), 1789–1796 (2011)

    Article  Google Scholar 

  28. W. Zhao, J. Wang, W. Zhai, Z. Wang, J. Chang, The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 26(31), 6113–6121 (2005)

    Article  Google Scholar 

  29. H. Ohgushi, A.I. Caplan, Stem cell technology and bioceramics: from cell to gene engineering. J. Biomed. Mater. Res. 48(6), 913–927 (1999)

    Article  Google Scholar 

  30. B. Zhang, C.T. Kwok, F.T. Cheng, H.C. Man, Fabrication of nano-structured HA/CNT coatings on Ti6Al4V by electrophoretic deposition for biomedical applications. J. Nanosci. Nanotechnol. 11(12), 10740–10745 (2011)

    Article  Google Scholar 

  31. H. Gheisari, E. Karimian, M. Abdellahi, A novel hydroxyapatite–Hardystonite nanocomposite ceramic. Ceram. Int. 41(4), 5967–5975 (2015)

    Article  Google Scholar 

  32. L. Li, J. Gao, Y. Wang, Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf. Coat. Technol. 185(1), 92–98 (2004)

    Article  Google Scholar 

  33. A.K. Jaiswal, H. Chhabra, S.S. Kadam, K. Londhe, V.P. Soni, J.R. Bellare, Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: a comparative study. Mater. Sci. Eng. C 33(5), 2926–2936 (2013)

    Article  Google Scholar 

  34. X. Zhang, Y. Wu, Y. Xue, Z. Wang, L. Yang, Biocorrosion behavior and cytotoxicity of a Mg–Gd–Zn–Zr alloy with long period stacking ordered structure. Mater. Lett. 86, 42–45 (2012)

    Article  Google Scholar 

  35. M. Zhang, W. Zhai, J. Chang, Prepration and characterization of a novel willemite bioceramic. Mater. Sci. 21, 1169–1173 (2010)

    Google Scholar 

  36. D.M. Reffitt, J. Meenan, J.D. Sanderson, R. Jugdaohsingh, J.J. Powell, R.P. Thompson, Bone density improves with disease remission in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 15(88), 1267–1273 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors’ deep appreciation is extended to Shahrekord University for superb technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Doostmohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgarian, R., Khalghi, A., Kiani Harchegani, R. et al. Synthesis of nanostructured hardystonite (HT) bioceramic coated on titanium alloy (Ti-6Al-4V) substrate and assessment of its corrosion behavior, bioactivity and cytotoxicity. Appl. Phys. A 127, 37 (2021). https://doi.org/10.1007/s00339-020-04188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04188-9

Keywords

Navigation