Skip to main content
Log in

Magnetic properties of FeCo-iron oxide core–shell nanoparticles investigated through first order reversal studies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Core–shell magnetic nanoparticles exhibit exchange bias, whereas the magnitude of the exchange bias field is influenced by various factors that are still under investigation. We present a detailed analysis of the magnetic behavior in Fe- and Co-rich FeCo particles with a ferrimagnetic oxide shell. The as-synthesized alloys, with an average particle size above 150 nm, show high saturation magnetization and exhibit multidomain nature. The magnetic behavior has been analyzed through first order reversal studies at room temperature, and low temperature (15 K) for the as-synthesized and size-reduced alloys. The size-reduced alloys exhibit exchange bias that enhances with decreasing average particle size and found to be maximum for the Co-rich FeCo. First order reversal curve (FORC) studies could resolve the reversible, irreversible magnetization components, and magnetostatic interactions. The low-temperature field cooled measurements expose random field bias acting at the interfaces. The studies reveal that FORC could be utilized to obtain information about particle size and its distribution dependent magnetic behavior in core–shell nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Leveneur, G.V.M. Williams, D.R.G. Mitchell, J. Kennedy, Emerg. Mater. 2, 313 (2019)

    Article  Google Scholar 

  2. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, J. Alloys Compd. 667, 255 (2016)

    Article  Google Scholar 

  3. G.V.M. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, J. Magn. Magn. Mater. 460, 229 (2018)

    Article  ADS  Google Scholar 

  4. J. Kennedy, J. Leveneur, G.V.M. Williams, D.R.G. Mitchell, A. Markwitz, Nanotechnology 22, 115602 (2011)

    Article  ADS  Google Scholar 

  5. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 105, 904 (1957)

    Article  ADS  Google Scholar 

  6. J. Železný, P. Wadley, K. Olejník, A. Hoffmann, H. Ohno, Nat. Phys. 14, 220 (2018)

    Article  Google Scholar 

  7. U. Nowak, K.D. Usadel, J. Keller, P. Miltényi, B. Beschoten, G. Güntherodt, Phys. Rev. B Condens. Matter Mater. Phys. 66, 1 (2002)

    Article  Google Scholar 

  8. E. Fulcomer, S.H. Charap, J. Appl. Phys. 43, 4184 (1972)

    Article  ADS  Google Scholar 

  9. D. Mauri, H.C. Siegmann, P.S. Bagus, E. Kay, J. Appl. Phys. 62, 3047 (1987)

    Article  ADS  Google Scholar 

  10. A.P. Malozemoff, Phys. Rev. B 35, 3679 (1987)

    Article  ADS  Google Scholar 

  11. N.C. Koon, Phys. Rev. Lett. 78, 4865 (1997)

    Article  ADS  Google Scholar 

  12. M. Ali, P. Adie, C.H. Marrows, D. Greig, B.J. Hickey, R.L. Stamps, Nat. Mater. 6, 70 (2007)

    Article  ADS  Google Scholar 

  13. J.S. Kouvel, J. Phys. Chem. Solids 21, 57 (1961)

    Article  ADS  Google Scholar 

  14. J.B. de Azevedo Filho, J.H. de Araújo, M.A. Morales, C.L. Firme, J.B. de Oliveira, J. Magn. Magn. Mater. 471, 177 (2019)

    Article  ADS  Google Scholar 

  15. D. Niebieskikwiat, M.B. Salamon, Phys. Rev. B Condens. Matter Mater. Phys. 72, 174422 (2005)

    Article  ADS  Google Scholar 

  16. S. Mangin, F. Montaigne, A. Schuhl, Phys. Rev. B. 68, 140404 (2003)

    Article  ADS  Google Scholar 

  17. Q.K. Ong, A. Wei, X. Lin, J. Phys. Chem. C. 115, 2665 (2009)

    Article  Google Scholar 

  18. K.S. Sivaranjani, G. Antilen Jacob, R. Justin Joseyphus, J. Magn. Magn. Mater. 513, 167228 (2020)

    Article  Google Scholar 

  19. C. Prados, M. Multigner, A. Hernando, J.C. Sánchez, A. Fernández, C.F. Conde, A. Conde, J. Appl. Phys. 85, 6118 (1999)

    Article  ADS  Google Scholar 

  20. L. Del Bianco, D. Fiorani, A.M. Testa, E. Bonetti, L. Savini, S. Signoretti, Phys. Rev. B Condens. Matter Mater. Phys. 66, 1 (2002)

    Google Scholar 

  21. A. Ceylan, C.C. Baker, S.K. Hasanain, S. Ismat Shah, J. Appl. Phys. 100, 3 (2006)

    Article  Google Scholar 

  22. C. Martínez-Boubeta, K. Simeonidis, M. Angelakeris, N. Pazos-Pérez, M. Giersig, A. Delimitis, L. Nalbandian, V. Alexandrakis, D. Niarchos, Phys. Rev. B Condens. Matter Mater. Phys. 74, 054430 (2006)

    Article  ADS  Google Scholar 

  23. S. Chandra, H. Khurshid, W. Li, G.C. Hadjipanayis, M.H. Phan, H. Srikanth, Phys. Rev. B Condens. Matter Mater. Phys. 86, 1 (2012)

    Article  Google Scholar 

  24. A. Radoń, S. Łoński, M. Kądziołka-Gaweł, P. Gębara, M. Lis, D. Łukowiec, R. Babilas, Colloids Surfaces A Physicochem. Eng. Asp. 607, 125446 (2020)

    Article  Google Scholar 

  25. A. Radoń, J. Kubacki, M. Kądziołka-Gaweł, P. Gębara, Ł Hawełek, S. Topolska, D. Łukowiec, J. Phys. Chem. Solids 145, 109530 (2020)

    Article  Google Scholar 

  26. R. Ponraj, A. Thirumurugan, G.A. Jacob, K.S. Sivaranjani, R.J. Joseyphus, Appl. Nanosci. 10, 477–483 (2020)

    Article  ADS  Google Scholar 

  27. P. Rajesh, J.-M. Greneche, G.A. Jacob, T. Arun, R.J. Joseyphus, Phys. Status Solidi. 216, 1900051 (2019)

    Article  ADS  Google Scholar 

  28. G.A. Jacob, S. Sellaiyan, A. Uedono, R.J. Joseyphus, Appl. Phys. A. 126, 120 (2020)

    Article  ADS  Google Scholar 

  29. R.J. Joseyphus, K. Shinoda, D. Kodama, B. Jeyadevan, Mater. Chem. Phys. 123, 487 (2010)

    Article  Google Scholar 

  30. P. Karipoth, A. Thirumurugan, R. Justin Joseyphus, J. Colloid Interface Sci. 404, 49 (2013)

    Article  ADS  Google Scholar 

  31. P. Karipoth, A. Thirumurugan, S. Velaga, J.M. Greneche, R. Justin Joseyphus, J. Appl. Phys. 120, 123906 (2016)

    Article  ADS  Google Scholar 

  32. F. Fievet, S. Ammar-Merah, R. Brayner, F. Chau, M. Giraud, F. Mammeri, J. Peron, J.Y. Piquemal, L. Sicard, G. Viau, Chem. Soc. Rev. 47, 5187 (2018)

    Article  Google Scholar 

  33. R.J. Joseyphus, A. Narayanasamy, D. Prabhu, L.K. Varga, B. Jeyadevan, C.N. Chinnasamy, K. Tohji, N. Ponpandian, Phys. Status Solidi 1, 3489 (2004)

    Article  Google Scholar 

  34. P. Karipoth, R.J. Joseyphus, Mater. Chem. Phys. 154, 53 (2015)

    Article  Google Scholar 

  35. P. Karipoth, R.J. Joseyphus, Sci. Adv. Mater. 6, 1792 (2014)

    Article  Google Scholar 

  36. C. Pike, A. Fernandez, J. Appl. Phys. 85, 6668 (1999)

    Article  ADS  Google Scholar 

  37. R. Wu, J.Z. Wei, X.L. Peng, J.B. Fu, S.Q. Liu, Y. Zhang, Y.H. Xia, C.S. Wang, Y.C. Yang, J.B. Yang, Appl. Phys. Lett. 104, 182403 (2014)

    Article  ADS  Google Scholar 

  38. R.J. Joseyphus, T. Matsumoto, H. Takahashi, D. Kodama, K. Tohji, B. Jeyadevan, J. Solid State Chem. 180, 3008 (2007)

    Article  ADS  Google Scholar 

  39. R.J. Joseyphus, D. Kodama, T. Matsumoto, Y. Sato, B. Jeyadevan, K. Tohji, J. Magn. Magn. Mater. 310, 2393 (2007)

    Article  ADS  Google Scholar 

  40. Z.J. Huba, K.J. Carroll, E.E. Carpenter, J. Appl. Phys. 109, 07B514 (2011)

    Article  Google Scholar 

  41. R.S. Sundar, S.C. Deevi, Int. Mater. Rev. 50, 157 (2005)

    Article  Google Scholar 

  42. S. Güner, M. Amir, M. Geleri, M. Sertkol, A. Baykal, Ceram. Int. 41, 10915 (2015)

    Article  Google Scholar 

  43. H.P.J. Wijn, Magnetic Properties of Metals D-Elements, Alloys and Compounds (Springer, Berlin, 1991).

    Book  Google Scholar 

  44. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, Mater. Res. Express 3, 126102 (2016)

    Article  ADS  Google Scholar 

  45. J. Leveneur, G.I.N. Waterhouse, J. Kennedy, J.B. Metson, D.R.G. Mitchell, J. Phys. Chem. C 115, 20978 (2011)

    Article  Google Scholar 

  46. C. Wang, D.R. Baer, J.E. Amonette, M.H. Engelhard, J. Antony, Y. Qiang, J. Am. Chem. Soc. 131, 8824 (2009)

    Article  Google Scholar 

  47. S. Peng, C. Wang, J. Xie, S. Sun, J. Am. Chem. Soc. 128, 10676 (2006)

    Article  Google Scholar 

  48. H. Yang, F. Ito, D. Hasegawa, T. Ogawa, M. Takahashi, J. Appl. Phys. 101, 09J112 (2007)

    Article  Google Scholar 

  49. A.G. Kolhatkar, I. Nekrashevich, D. Litvinov, R.C. Willson, T.R. Lee, Chem. Mater. 25, 1092 (2013)

    Article  Google Scholar 

  50. S.B. Dalavi, M.M. Raja, R.N. Panda, N. J. Chem. 39, 9641 (2015)

    Article  Google Scholar 

  51. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Rep. 422, 65 (2005)

    Article  ADS  Google Scholar 

  52. H. Wang, T. Zhu, K. Zhao, W.N. Wang, C.S. Wang, Y.J. Wang, W.S. Zhan, Phys. Rev. B Condens. Matter Mater. Phys. 70, 092409 (2004)

    Article  ADS  Google Scholar 

  53. J.S. Anandhi, T. Arun, R.J. Joseyphus, Phys. B Condens. Matter 598, 412429 (2020)

    Article  Google Scholar 

  54. G.S. Chaubey, C. Barcena, N. Poudyal, C. Rong, J. Gao, S. Sun, J.P. Liu, J. Am. Chem. Soc. 129, 7214 (2007)

    Article  Google Scholar 

  55. J. Shebha Anandhi, G. Antilen Jacob, R. Justin Joseyphus, J. Magn. Magn. Mater. 512, 166992 (2020)

    Article  Google Scholar 

  56. D. Givord, O.F.K. McGrath, C. Meyer, J. Rothman, J. Magn. Magn. Mater. 157–158, 245 (1996)

    Article  ADS  Google Scholar 

  57. S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, A. Kostikas, Phys. Rev. B 45, 9778 (1992)

    Article  ADS  Google Scholar 

  58. Ò. Iglesias, X. Batlle, A. Labarta, Phys. Rev. B Condens. Matter Mater. Phys. 72, 212401 (2005)

    Article  ADS  Google Scholar 

  59. G. Lavorato, E. Winkler, A. Ghirri, E. Lima, D. Peddis, H.E. Troiani, D. Fiorani, E. Agostinelli, D. Rinaldi, R.D. Zysler, Phys. Rev. B 94, 1 (2016)

    Google Scholar 

  60. T. Gredig, I.N. Krivorotov, E.D. Dahlberg, Phys. Rev. B Condens. Matter Mater. Phys. 74, 1 (2006)

    Article  Google Scholar 

  61. G. Hassnain Jaffari, S. RizwanAli, S.K. Hasanain, G. Güntherodt, S. Ismat Shah, J. Appl. Phys. 108, 063921 (2010)

    Article  ADS  Google Scholar 

  62. H. Khurshid, M.H. Phan, P. Mukherjee, H. Srikanth, Appl. Phys. Lett. 104, 072407 (2014)

    Article  ADS  Google Scholar 

  63. M. Kovylina, M.G. Del Muro, Z. Konstantinović, M. Varela, O. Iglesias, A. Labarta, X. Batlle, Nanotechnology 20, 175702 (2009)

    Article  ADS  Google Scholar 

  64. C.R. Pike, C.A. Ross, R.T. Scalettar, G. Zimanyi, Phys. Rev. B Condens. Matter Mater. Phys. 71, 134407 (2005)

    Article  ADS  Google Scholar 

  65. A.P. Roberts, Q. Liu, C.J. Rowan, L. Chang, C. Carvallo, J. Torrent, C.-S. Horng, J. Geophys. Res. Solid Earth 111, B12S35 (2006)

    ADS  Google Scholar 

  66. C.R. Pike, A.P. Roberts, K.L. Verosub, J. Appl. Phys. 85, 6660 (1999)

    Article  ADS  Google Scholar 

  67. A.P. Roberts, C.R. Pike, K.L. Verosub, J. Geophys. Res. Solid Earth 105, 28461 (2000)

    Article  Google Scholar 

  68. R. Pike, Phys. Rev. B Condens. Matter Mater. Phys. 68, 104424 (2003)

    Article  ADS  Google Scholar 

  69. D. Jiles, Introduction to Magnetism and Magnetic Materials, 3rd edn. (CRC Press, Florida, 2015).

    Book  Google Scholar 

  70. A.M. Hirt, G.A. Sotiriou, P.R. Kidambi, A. Teleki, J. Appl. Phys. 115, 044314 (2014)

    Article  ADS  Google Scholar 

  71. G. Bertotti, I. D. Mayergoyz, The Science of Hysteresis, 1st edn. (Academic Press, Oxford, 2006).

    Google Scholar 

  72. B.F. Valcu, D.A. Gilbert, K. Liu, IEEE Trans. Magn. 47, 2988 (2011)

    Article  ADS  Google Scholar 

  73. L. Alonso, T.R.F. Peixoto, D.R. Cornejo, J. Phys. D. Appl. Phys. 43, 465001 (2010)

    Article  ADS  Google Scholar 

  74. M.C. Grijalva-Castillo, C.R. Santillán-Rodríguez, R.J. Sáenz-Hernández, M.E. Botello-Zubíate, J.A. Matutes-Aquino, Materials (Basel) 11, 1 (2018)

    Article  Google Scholar 

  75. R.A. Gallardo, S. Khanal, J.M. Vargas, L. Spinu, C.A. Ross, C. Garcia, J. Phys. D. Appl. Phys. 50, 075002 (2017)

    Article  ADS  Google Scholar 

  76. S. Khanal, A. Diaconu, J.M. Vargas, D.R. Lenormand, C. Garcia, C.A. Ross, L. Spinu, J. Phys. D. Appl. Phys. 47, 255002 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology, Govt. of India, for the facilities sanctioned under FIST, Nanomission, and the CRG project (CRG/2018/000939). GAJ acknowledges his seniors Dr. K. Prakash, University of Glasgow, and Mr. P. Rajesh, for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Justin Joseyphus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antilen Jacob, G., Justin Joseyphus, R. Magnetic properties of FeCo-iron oxide core–shell nanoparticles investigated through first order reversal studies. Appl. Phys. A 127, 33 (2021). https://doi.org/10.1007/s00339-020-04176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04176-z

Keywords

Navigation