Skip to main content

Advertisement

Log in

Gamma-ray attenuation competences and optical characterization of MgO–MoO3–TeO2–BaO glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The kinetic, optical features, and gamma-ray shielding competence of 0.8 [xBaO (1 − x)MgO]·0.2MoO3·2TeO2:x = 0,0.3, 0.5, 0.7, and 1 mol% named as M1–M5 have been investigated. The highest value of the optical electronegativity (χ*) was achieved for the M4 glass sample, while the lowest was achieved for the M5 sample. The nonlinear refractive index \(\left( {n_{2}^{{{\text{optical}}}} } \right)\) and nonlinear optical susceptibility (χ3) followed the same trend. The values of the bulk modulus (KB−C) decreased from 144.52 GPa for the M1 glass to 79.14 GPa for the M5 glass with increasing the BaO content. The longitudinal modulus (LB−C) decreased from 289.61 to 158.58 GPa and the Young’s modulus (EB−C) decreased from 261.74 to 143.17 GPa for M1–M5 glasses. Poisson’s ratio (σB−C) for all glasses (M1–M5) has a constant value (0.198) as the average cross-link density (\(\overline{n}_{{\text{c}}}\)) for all glasses is constant. The transmission factor (TF) of M1–M5 glasses decreases significantly as the mol% of BaO increases. The half value thickness (HVT) follows the trend of (M1)HVT > (M2)HVT > (M3)HVT > (M4)HVT > (M5)HVT. The effective atomic number (Zeff) follows the trend of (M1)Zeff < (M2)Zeff < (M3)Zeff < (M4)Zeff < (M5)Zeff. This observation comes from the fact that BaO has a greater atomic number than MgO, so that as the concentration of BaO increases in the glasses, the Zeff of the glasses increases as well. Generally, since a lower TF means a greater attenuating ability, it can be determined that the M5 glass has the better shielding ability and that the greater BaO content leads to greater attenuation in the investigated glass system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Beir, Health Effects of Exposure to Low Levels of Ionizing Radiation (Academic Press, New York, 1990)

    Google Scholar 

  2. M.I. Sayyed, Investigation of shielding parameters for smart polymers. Chin. J. Phys. 54(3), 408–415 (2016)

    Article  Google Scholar 

  3. S.S. Obaid et al., Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    Article  ADS  Google Scholar 

  4. M.I. Sayyed, M.Y. AlZaatreh, K.A. Matori, H.A.A. Sidek, M.H.M. Zaid, Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries. Results Phys. 9, 585–592 (2018)

    Article  ADS  Google Scholar 

  5. F. Akman, M.R. Kaçal, M.I. Sayyed, H.A. Karataş, Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 782, 315–322 (2019)

    Article  Google Scholar 

  6. S.S. Obaid et al., Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study. Radiat. Effects Defect Solid 173(11–12), 900–914 (2018)

    Article  Google Scholar 

  7. S.S. Obaid et al., Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)

    Article  ADS  Google Scholar 

  8. B. Aygün, B. Alaylar, K. Turhan, E. Şakar, M. Karadayı, M.I.A. Al-Sayyed, E. Pelit, M. Güllüce, A. Karabulut, Z. Turgut, B. Alım, Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. Inte. J. Radiat. Biol. (2020). https://doi.org/10.1080/09553002.2020.1811421

    Article  Google Scholar 

  9. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses, Ceram. Int. 45, 20724–20732 (2019)

    Article  Google Scholar 

  10. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2–PbO–Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    Article  Google Scholar 

  11. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.168

    Article  Google Scholar 

  12. Y. Al-Hadeethi, M.I. Sayyed, BaO–Li2O–B2O3 glass systems: potential utilization in gamma radiation protection. Prog. Nucl. Energy 129, 103511 (2020)

    Article  Google Scholar 

  13. M.S. Al-Buriahi, Y.S. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125(10), 678 (2019)

    Article  ADS  Google Scholar 

  14. Y.S. Rammah, M.S. Al-Buriahi, A.S. Abouhaswa, B2O3–BaCO3–Li2O3 glass system doped with Co3O4: structure, optical, and radiation shielding properties. Phys. B Condens. Matter 576, 411717 (2019)

    Article  Google Scholar 

  15. I. Kebaili, I. Boukhris, M.S. Al-Buriahi, A. Alalawi, M.I. Sayyed, Ge–Se–Sb–Ag chalcogenide glasses for nuclear radiation shielding applications. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.251

    Article  Google Scholar 

  16. M.S. Al-Buriahi, H.H. Somaily, A. Alalawi, S. Alraddadi, Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01750-z

    Article  Google Scholar 

  17. M.S. Al-Buriahi, Y.S.M. Alajerami, A.S. Abouhaswa, A. Alalawi, T. Nutaro, B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J. Non Cryst. Solids 544(2020), 120171 (2020)

    Article  Google Scholar 

  18. S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H.J. Bookey, A.K. Kar, Tellurite glasses for broadband amplifiers and integrated optics. J. Am. Ceram. Soc. 85, 1391–1395 (2002)

    Article  Google Scholar 

  19. S.F. Mansour, Y. El Sayed, M.Y. Hassaan, A.M. Emara, The influence of oxides on the optical properties of tellurite glasses. Phys. Scripta 89, 115812 (2014)

    Article  ADS  Google Scholar 

  20. A. Jha, B. Richards, G. Jose, T.T. Fernandez, P. Joshi, X. Jiang, J. Lousteau, Rare earth ion doped TeO2 and GeO2 glasses as laser materials. Prog. Mater. Sci. 57, 1426–1491 (2012)

    Article  Google Scholar 

  21. Y. El Sayed, Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application. J. Alloy Compd. 561, 234–240 (2013)

    Article  Google Scholar 

  22. S.J. Madden, K.T. Vu, High-performance integrated optics with tellurite glasses: status and prospects. Int. J. Appl. Glass Sci. 3, 289–298 (2012)

    Article  Google Scholar 

  23. R.A.H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data (CRC Press, Boca Raton, 2002)

    MATH  Google Scholar 

  24. F.I. El-Agawany, E. Kavaz, U. Perişanoğlu, M.S. Al-Buriah, Y.S. Rammah, Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Appl. Phys. A 125, 838 (2019)

    Article  ADS  Google Scholar 

  25. A.E. Ersundu, M. Büyükyıldız, M.C. Ersundu, E. Şakar, M. Kurudirek, The heavy metal oxide glasses within the WO3–MoO3–TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 104, 280–287 (2018)

    Article  Google Scholar 

  26. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, M.I. Sayyed, Radiation shielding properties of tellurite–lead–tungsten glasses against gamma and beta radiations. J. Non Cryst. Solids 551, 120430 (2021)

    Article  Google Scholar 

  27. Y.S. Rammah, E. Kavaz, H. Akyildirim, F.I. El-Agawany, Evaluation of photon, neutron, and charged particle shielding competences of TeO2–B2O3–Bi2O3–TiO2 glasses. J. Non Cryst. Solids 535, 119960 (2020)

    Article  ADS  Google Scholar 

  28. M.S. Al-Buriahi, Y.S. Rammah, Radiation sensing properties of tellurite glasses belonging to ZnO–TeO2–PbO system using Geant4 code. Radiat. Phys. Chem. 170, 108632 (2020)

    Article  Google Scholar 

  29. Y.S. Rammah, Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2–B2O3–SrCl2–LiF–Bi2O3. Appl. Phys. A 125, 857 (2019)

    Article  ADS  Google Scholar 

  30. ImenKebaili ImedBoukhris, M.I. Sayyed, A. Askin, Y.S. Rammah, Linear, nonlinear optical and photon attenuation properties of La3+ doped tellurite glasses. Opt. Mater. 108(2020), 110196 (2020)

    Google Scholar 

  31. S. Terny, M.A. Frechero, Understanding how the mixed alkaline-earth effect tunes transition metal oxides-tellurite glasses properties. Phys. B Condens. Matter 583, 412054 (2020)

    Article  Google Scholar 

  32. J.A. Duffy, Bonding, Energy Level and Bonds in Inorganic Solids (Longman, England, 1990)

    Google Scholar 

  33. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    Google Scholar 

  34. A.A. El-Moneim, Quantitative analysis of elastic moduli and structure of B2O3–SiO2 and Na2O–B2O3–SiO2 glasses. Phys. B Phys. Condens. Matter 325, 319–332 (2003)

    Article  ADS  Google Scholar 

  35. N. Elkhoshkhany, E. Syala, E. Yousef, Concentration dependence of the elastic moduli, thermal properties, and non-isothermal kinetic parameters of Yb3+ doped multicomponent tellurite glass system. Results Phys. 16, 102876 (2020)

    Article  Google Scholar 

  36. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736–1740 (1996)

    Article  ADS  Google Scholar 

  37. S.E. Aw, H.S. Tan, C.K. Ong, Optical absorption measurements of band-gap shrinkage in moderately and heavily doped silicon. J. Phys. Condens. Matter 3, 8213–8223 (1991)

    Article  ADS  Google Scholar 

  38. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. RG-5-130-41. The authors, therefore, acknowledge with thanks technical and financial support of DSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Sayyed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hadeethi, Y., Sayyed, M.I., Raffah, B.M. et al. Gamma-ray attenuation competences and optical characterization of MgO–MoO3–TeO2–BaO glasses. Appl. Phys. A 126, 875 (2020). https://doi.org/10.1007/s00339-020-04063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04063-7

Keywords

Navigation