Skip to main content
Log in

Erasure of nanopores in silicate glasses induced by femtosecond laser irradiation in the Type II regime

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical devices fabricated by femtosecond (fs) laser within the Type II regime are of interest for high temperature applications (> 800 °C). fs-Type II regime is characterized by the formation of self-organized nanogratings, which are composed of regularly spaced porous nanolayers with nanopores having a typical size of a few tens of nm. In this work, we first investigate the evolution of the nanopore size distribution as a function of fs-laser writing speed and pulse energy, as well as a function of annealing temperature after fs-laser irradiation. Then, the thermal stability of such nanopores is numerically investigated through the use of the Rayleigh–Plesset (R–P) equation, and is compared with experimental data. The R–P equation provides insights into the temperature range at which the nanopores would ultimately collapse, serving as a design tool for future high temperature fs-Type II based devices. The key role of glass viscosity and nanopore diameter on the overall thermal stability is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. M. Cavillon, M. Lancry, B. Poumellec et al., Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres. J. Phys. Photonics 1, 042001 (2019). https://doi.org/10.1088/2515-7647/ab382f

    Article  ADS  Google Scholar 

  2. S.J. Mihailov, D. Grobnic, C. Hnatovsky et al., Extreme environment sensing using femtosecond laser-inscribed fiber bragg gratings. Sensors (2017). https://doi.org/10.3390/s17122909

    Article  Google Scholar 

  3. J. Zhang, M. Gecevičius, M. Beresna, P.G. Kazansky, Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 1–5 (2014). https://doi.org/10.1103/PhysRevLett.112.033901

    Article  Google Scholar 

  4. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003). https://doi.org/10.1103/PhysRevLett.91.247405

    Article  ADS  Google Scholar 

  5. S. Richter, C. Miese, S. Döring et al., Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULETM. Opt. Mater. Express 3, 1161–1166 (2013). https://doi.org/10.1364/OME.3.001161

    Article  ADS  Google Scholar 

  6. M. Lancry, F. Zimmerman, R. Desmarchelier et al., Nanogratings formation in multicomponent silicate glasses. Appl. Phys. B Lasers Opt. 122, 1–8 (2016). https://doi.org/10.1007/s00340-016-6337-8

    Article  Google Scholar 

  7. E. Bricchi, P.G. Kazansky, Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass. Appl. Phys. Lett. 88, 2–4 (2006). https://doi.org/10.1063/1.2185587

    Article  Google Scholar 

  8. S.-E. Wei, Y. Wang, H. Yao et al., Thermal stability of type II modifications by IR femtosecond laser in silica-based glasses. Sensors 20, 1–14 (2020). https://doi.org/10.3390/s20030762

    Article  Google Scholar 

  9. J.J. Witcher, W.J. Reichman, L.B. Fletcher et al., Thermal annealing of femtosecond laser written structures in silica glass. Opt. Mater. Express 3, 502–510 (2013). https://doi.org/10.1364/OME.3.000502

    Article  ADS  Google Scholar 

  10. J. Lu, M. Yang, D.N. Wang et al., Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Opt. Express 17, 19785–19790 (2009). https://doi.org/10.1364/oe.17.019785

    Article  ADS  Google Scholar 

  11. R.R. Thomson, P. Gillet, S. Mukherjee et al., Stress-state manipulation in fused silica via femtosecond laser irradiation. Optica 3, 1285 (2016). https://doi.org/10.1364/optica.3.001285

    Article  ADS  Google Scholar 

  12. V.R. Bhardwaj, P.B. Corkum, D.M. Rayner et al., Stress in femtosecond-laser-written waveguides in fused silica. Opt. Lett. 29, 1312–1314 (2004). https://doi.org/10.1364/OL.29.001312

    Article  ADS  Google Scholar 

  13. J. Tian, H. Yao, M. Cavillon et al., A comparison between nanogratings-based and stress-engineered waveplates written by femtosecond laser in silica. Micromachines 11, 1–11 (2020). https://doi.org/10.3390/mi11020131

    Article  Google Scholar 

  14. M. Lancry, B. Poumellec, J. Canning et al., Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 7, 953–962 (2013). https://doi.org/10.1002/lpor.201300043

    Article  ADS  Google Scholar 

  15. J. Canning, M. Lancry, K. Cook et al., Anatomy of a femtosecond laser processed silica waveguide. Opt. Mater. Express 1, 998–1008 (2011). https://doi.org/10.1364/ome.1.000998

    Article  ADS  Google Scholar 

  16. A.J. Berger, Y. Wang, D.M. Sammeth et al., Aqueous dissolved gas measurements using near-infrared raman spectroscopy. Appl. Spectrosc. 49, 1164–1169 (1995). https://doi.org/10.1366/0003702953965047

    Article  ADS  Google Scholar 

  17. F. Zimmermann, Ultrashort Pulse Induced Nanostructures in Transparent Materials (Friedrich-Schiller-Universitat, Jena, 2017)

    Google Scholar 

  18. R. Desmarchelier, B. Poumellec, F. Brisset et al., In the heart of femtosecond laser induced nanogratings : From porous nanoplanes to form birefringence. World J. Nano Sci. Eng. 5, 115–125 (2015). https://doi.org/10.4236/wjnse.2015.54014

    Article  ADS  Google Scholar 

  19. A. Rudenko, J.P. Colombier, T.E. Itina, Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass. Phys. Chem. Chem. Phys. 20, 5887–5899 (2018). https://doi.org/10.1039/c7cp07603g

    Article  Google Scholar 

  20. S. Richter, A. Plech, M. Steinert et al., On the fundamental structure of femtosecond laser-induced nanogratings. Laser Photonics Rev. 6, 787–792 (2012). https://doi.org/10.1002/lpor.201200048

    Article  ADS  Google Scholar 

  21. M. Sakakura, Y. Lei, L. Wang et al., Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light Sci. Appl. 9, 1–10 (2020). https://doi.org/10.1038/s41377-020-0250-y

    Article  Google Scholar 

  22. M.S. Plesset, The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277–282 (1949). https://doi.org/10.1080/15435075.2018.1431546

    Article  Google Scholar 

  23. C.E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  24. K. Boyd, H. Ebendorff-Heidepriem, T.M. Monro, J. Munch, Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser. Opt. Mater. Express 2, 1101–1110 (2012). https://doi.org/10.1364/ome.2.001101

    Article  ADS  Google Scholar 

  25. V.A. Markel, Introduction to the Maxwell Garnett approximation: Tutorial. J. Opt. Soc. Am. A 33, 1244–1256 (2016). https://doi.org/10.1364/JOSAA.33.001244

    Article  ADS  Google Scholar 

  26. M.J. Weber, Handbook of Optical Materials (CRC Press, London, 2003)

    Google Scholar 

  27. F. Zhang, Y. Yu, C. Cheng et al., Wavelength response and thermal stability of embedded nanograting structure light attenuator fabricated by direct femtosecond laser writing. Appl. Phys. B Lasers Opt. 117, 53–58 (2014). https://doi.org/10.1007/s00340-014-5797-y

    Article  ADS  Google Scholar 

  28. M. Lancry, J. Canning, K. Cook et al., Nanoscale femtosecond laser milling and control of nanoporosity in the normal and anomalous regimes of GeO2-SiO2 glasses. Opt. Mater. Express 6, 321 (2016). https://doi.org/10.1364/OME.6.000321

    Article  ADS  Google Scholar 

  29. B. Poumellec, M. Lancry, Kinetics of thermally activated physical processes in disordered media. Fibers 3, 206–252 (2015). https://doi.org/10.3390/fib3030206

    Article  Google Scholar 

  30. M. Gecevičius, Polarization Sensitive Optical Elements by Ultrafast Laser Nanostructuring of Glass (University of Southampton, Southampton, 2015)

    Google Scholar 

  31. F. Zimmermann, M. Lancry, A. Plech et al., Femtosecond laser written nanostructures in Ge-doped glasses. Opt. Lett. 41, 1161–1164 (2016). https://doi.org/10.1364/ol.41.001161

    Article  ADS  Google Scholar 

  32. M. Beresna, M. Gecevičius, P.G. Kazansky, T. Gertus, Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 1–4 (2011). https://doi.org/10.1063/1.3590716

    Article  Google Scholar 

  33. R. Desmarchelier, M. Lancry, M. Gecevicius et al., Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass. Appl. Phys. Lett. 107, 181111 (2015). https://doi.org/10.1063/1.4934866

    Article  ADS  Google Scholar 

  34. M. Gecevičius, M. Beresna, P.G. Kazansky, Polarization sensitive camera by femtosecond laser nanostructuring. Opt. Lett. 38, 4096–4099 (2013). https://doi.org/10.1364/ol.38.004096

    Article  ADS  Google Scholar 

  35. R.J. Williams, R.G. Krämer, S. Nolte et al., Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology. Opt. Express 21, 26854–26867 (2013). https://doi.org/10.1364/oe.21.026854

    Article  ADS  Google Scholar 

  36. E.N. Glezer, M. Milosavljevic, L. Huang et al., 3-D optical storage inside transparent materials. Opt. Lett. 21, 2023–2026 (1996)

    Article  ADS  Google Scholar 

  37. E.G. Gamaly, S. Juodkazis, K. Nishimura et al., Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation. Phys. Rev. B Condens. Matter Mater. Phys. 73, 1–15 (2006). https://doi.org/10.1103/PhysRevB.73.214101

    Article  Google Scholar 

  38. Y. Wang, S. Wei, R.C. Yuta et al., Femtosecond laser direct writing in SiO2 -Al2O3 binary glasses and thermal stability of Type II permanent modifications. J. Am. Ceram. Soc. (2020). https://doi.org/10.1111/jace.17164

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the following institutions for funding their research: Agence Nationale pour la Recherche, FLAG/IR project, grant number ANR-18-CE08-0004-01 and CNRS Défi Instrumentation aux Limites, Ultrabragg project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Cavillon.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavillon, M., Wang, Y., Poumellec, B. et al. Erasure of nanopores in silicate glasses induced by femtosecond laser irradiation in the Type II regime. Appl. Phys. A 126, 876 (2020). https://doi.org/10.1007/s00339-020-04062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04062-8

Keywords

Navigation