Skip to main content
Log in

High-performance self-powered perovskite photodetector for visible light communication

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Real-time, accurate, and portable detection of wireless signal is a crucial part of mobile communication. A highly sensitive detector with quickly response is the indispensable component for obtaining optical signal. Organic/inorganic hybrid perovskite (CH3NH3PbI3) has been fabricated to photodetectors with a rapid response time and high responsivity by optimizing the quality of photosensitive layer with appropriate transport layer. The devices show high responsivity of 436 mA W−1 at 753 nm, fast response time of 1.7 μs, large linear dynamic range of 106 dB, as well as 75 kHz bandwidth, all under zero bias. Attributing to these prominent characteristics, this perovskite photodetector was integrated into an optical communication system, serving as a light sensor in receiver terminal. With it, the string, text and data files are transmitted by coded light successfully, accurately and rapidly. These results show the great potential of applications in visible light detection for organic/inorganic hybrid perovskite junction photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Donati, Photodetectors: devices, circuits and applications. Meas. Sci. Technol. (2000). https://doi.org/10.1088/0957-0233/12/5/703

    Article  Google Scholar 

  2. H.J. Haugan, S. Elhamri, F. Szmulowicz, B. Ullrich, G.J. Brown, W.C. Mitchel, Study of residual background carriers in midinfrared InAs∕GaSb superlattices for uncooled detector operation. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2884264

    Article  Google Scholar 

  3. L. Zeng, D.C. O’Brien, H. Le Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, E.T. Won, High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE J. Sel. Areas Commun. 27, 1654–1662 (2009). https://doi.org/10.1109/JSAC.2009.091215

    Article  Google Scholar 

  4. V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009). https://doi.org/10.1126/science.1173812

    Article  ADS  Google Scholar 

  5. L. Dou, Y.M. Yang, J. You, Z. Hong, W.H. Chang, G. Li, Y. Yang, Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014). https://doi.org/10.1038/ncomms6404

    Article  ADS  Google Scholar 

  6. R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X.C. Zeng, J. Huang, High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv Mater 27, 1912–1918 (2015). https://doi.org/10.1002/adma.201405116

    Article  Google Scholar 

  7. E. López-Fraguas, B. Arredondo, C. Vega-Colado, G.D. Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J.M. Sánchez-Pena, R. Vergaz, B. Romero, Visible light communication system using an organic emitter and a perovskite photodetector. Org. Electron. 73, 292–298 (2019). https://doi.org/10.1016/j.orgel.2019.06.028

    Article  Google Scholar 

  8. Y. Xie, J. Fan, C. Liu, S. Chi, Z. Wang, H. Yu, H. Zhang, Y. Mai, J. Wang, Giant two-photon absorption in mixed halide perovskite CH3NH3Pb0.75Sn0.25I3 thin films and application to photodetection at optical communication wavelengths. Adv. Opt. Mater. (2018). https://doi.org/10.1002/adom.201700819

    Article  Google Scholar 

  9. H. Guo, J. Zhao, Q. Dong, L. Wang, X. Ren, S. Liu, C. Zhang, G. Dong, A self-powered and high-voltage-isolated organic optical communication system based on triboelectric nanogenerators and solar cells. Nano Energy 56, 391–399 (2019). https://doi.org/10.1016/j.nanoen.2018.11.032

    Article  Google Scholar 

  10. Z. Liu, X. Liu, B. Sun, X. Tan, H. Ye, J. Zhou, Z. Tang, T. Shi, G. Liao, A Cu-doping strategy to enhance photoelectric performance of self-powered hole-conductor-free perovskite photodetector for optical communication applications. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.202000260

    Article  Google Scholar 

  11. H. Fang, Q. Li, J. Ding, N. Li, H. Tian, L. Zhang, T. Ren, J. Dai, L. Wang, Q. Yan, A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. J. Mater. Chem. C 4, 630–636 (2016). https://doi.org/10.1039/C5TC03342J

    Article  Google Scholar 

  12. H. Lu, W. Tian, F. Cao, Y. Ma, B. Gu, L. Li, A self-powered and stable all-perovskite photodetector-solar cell nanosystem. Adv. Funct. Mater. 26, 1296–1302 (2016). https://doi.org/10.1002/adfm.201504477

    Article  Google Scholar 

  13. P. Yu, K. Hu, H. Chen, L. Zheng, X. Fang, Novel p–p heterojunctions self-powered broadband photodetectors with ultrafast speed and high responsivity. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201703166

    Article  Google Scholar 

  14. J. Ding, H. Fang, Z. Lian, J. Li, Q. Lv, L. Wang, J.-L. Sun, Q. Yan, A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes. CrystEngComm 18, 4405–4411 (2016). https://doi.org/10.1039/C5CE02531A

    Article  Google Scholar 

  15. T. Pang, R. Jia, Y. Wang, K. Sun, Z. Hu, Y. Zhu, S. Luan, Y. Zhang, Self-powered behavior based on the light-induced self-poling effect in perovskite-based transport layer-free photodetectors. J. Mater. Chem. C 7, 609–616 (2019). https://doi.org/10.1039/C8TC05045G

    Article  Google Scholar 

  16. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Gratzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014). https://doi.org/10.1038/ncomms4834

    Article  ADS  Google Scholar 

  17. I. Hwang, M. Baek, K. Yong, Core/shell structured TiO2/CdS electrode to enhance the light stability of perovskite solar cells. ACS Appl. Mater. Interfaces 7, 27863–27870 (2015). https://doi.org/10.1021/acsami.5b09442

    Article  Google Scholar 

  18. H.C. Cheng, G. Wang, D. Li, Q. He, A. Yin, Y. Liu, H. Wu, M. Ding, Y. Huang, X. Duan, van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 16, 367–373 (2016). https://doi.org/10.1021/acs.nanolett.5b03944

    Article  ADS  Google Scholar 

  19. D.H. Kang, S.R. Pae, J. Shim, G. Yoo, J. Jeon, J.W. Leem, J.S. Yu, S. Lee, B. Shin, J.H. Park, An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 28, 7799–7806 (2016). https://doi.org/10.1002/adma.201600992

    Article  Google Scholar 

  20. J. Dong, J. Wu, J. Jia, L. Fan, Y. Lin, J. Lin, M. Huang, Efficient perovskite solar cells employing a simply-processed CdS electron transport layer. J. Mater. Chem. C 5, 10023–10028 (2017). https://doi.org/10.1039/C7TC03343E

    Article  Google Scholar 

  21. Y. Zhao, Y. Zhao, W. Zhou, Q. Li, R. Fu, D. Yu, Q. Zhao, In situ cesium modification at interface enhances the stability of perovskite solar cells. ACS Appl. Mater. Interfaces 10, 33205–33213 (2018). https://doi.org/10.1021/acsami.8b10616

    Article  Google Scholar 

  22. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015). https://doi.org/10.1039/C5EE00120J

    Article  Google Scholar 

  23. M. Crespo-Quesada, L.M. Pazos-Outon, J. Warnan, M.F. Kuehnel, R.H. Friend, E. Reisner, Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016). https://doi.org/10.1038/ncomms12555

    Article  ADS  Google Scholar 

  24. C. Xie, F. Yan, Enhanced performance of perovskite/organic-semiconductor hybrid heterojunction photodetectors with the electron trapping effects. J. Mater. Chem. C 6, 1338–1342 (2018). https://doi.org/10.1039/C7TC05321E

    Article  Google Scholar 

  25. L. Qin, L. Wu, B. Kattel, C. Li, Y. Zhang, Y. Hou, J. Wu, W.-L. Chan, Using bulk heterojunctions and selective electron trapping to enhance the responsivity of perovskite-graphene photodetectors. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201704173

    Article  Google Scholar 

  26. Y. Zhang, J. Du, X. Wu, G. Zhang, Y. Chu, D. Liu, Y. Zhao, Z. Liang, J. Huang, Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films. ACS Appl. Mater. Interfaces 7, 21634–21638 (2015). https://doi.org/10.1021/acsami.5b05221

    Article  Google Scholar 

  27. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, Q.J. Wang, Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1–11 (2013). https://doi.org/10.1038/ncomms2830

    Article  ADS  Google Scholar 

  28. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784

    Article  ADS  Google Scholar 

  29. Z. Li, H. Li, K. Jiang, D. Ding, J. Li, C. Ma, S. Jiang, Y. Wang, T.D. Anthopoulos, Y. Shi, Self-powered perovskite/CdS heterostructure photodetectors. ACS Appl. Mater. Interfaces 11, 40204–40213 (2019). https://doi.org/10.1021/acsami.9b11835

    Article  Google Scholar 

  30. L.H. Zeng, Q.M. Chen, Z.X. Zhang, D. Wu, H. Yuan, Y.Y. Li, W. Qarony, S.P. Lau, L.B. Luo, Y.H. Tsang, Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 6, 1901134 (2019). https://doi.org/10.1002/advs.201901134

    Article  Google Scholar 

  31. X. Xu, C.C. Chueh, P. Jing, Z. Yang, X. Shi, T. Zhao, L.Y. Lin, A.K.Y. Jen, High-performance near-IR photodetector using low-bandgap MA0.5FA0.5Pb0.5Sn0.5I3 perovskite. Adv. Funct. Mater. 27, 1701053 (2017). https://doi.org/10.1002/adfm.201701053

    Article  Google Scholar 

  32. A. Jovicic, J. Li, T. Richardson, Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51, 26–32 (2013). https://doi.org/10.1109/MCOM.2013.6685754

    Article  Google Scholar 

  33. P.H. Pathak, X. Feng, P. Hu, P. Mohapatra, Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17, 2047–2077 (2015). https://doi.org/10.1109/COMST.2015.2476474

    Article  Google Scholar 

  34. H. Zhao, Y. Zhang, T. Li, Q. Li, Y. Yu, Z. Chen, Y. Li, J. Yao, Self-driven visible-near infrared photodetector with vertical CsPbBr3/PbS quantum dots heterojunction structure. Nanotechnology 31, 035202 (2019). https://doi.org/10.1088/1361-6528/ab4b17

    Article  ADS  Google Scholar 

  35. H.L. Zhu, H. Lin, Z. Song, Z. Wang, F. Ye, H. Zhang, W.-J. Yin, Y. Yan, W.C. Choy, Achieving high-quality Sn–Pb perovskite films on complementary metal-oxide-semiconductor-compatible metal/silicon substrates for efficient imaging array. ACS Nano 13, 11800–11808 (2019). https://doi.org/10.1021/acsnano.9b05774

    Article  Google Scholar 

  36. G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, W. Mai, Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications. Small 15, 1902135 (2019). https://doi.org/10.1002/smll.201902135

    Article  Google Scholar 

  37. F. Cao, W. Tian, M. Wang, H. Cao, L. Li, Semitransparent, flexible, and self-powered photodetectors based on ferroelectricity-assisted perovskite nanowire arrays. Adv. Funct. Mater. 29, 1901280 (2019). https://doi.org/10.1002/adfm.201901280

    Article  Google Scholar 

  38. Y. Zhang, S. Li, W. Yang, M.K. Joshi, X. Fang, Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector. J. Phys. Chem. Lett. 10, 2400–2407 (2019). https://doi.org/10.1021/acs.jpclett.9b00960

    Article  Google Scholar 

  39. S. Sadhasivam, A. Gunasekaran, N. Anbarasan, M. Mukilan, K. Jeganathan, Topotactic transition of Pb0.99Bi0.01I2 into CH3NH3Pb0.99Bi0.01I3 on TiO2 for high-performance visible light perovskite photodetector. Mater. Lett. (2020). https://doi.org/10.1016/j.matlet.2020.128155

    Article  Google Scholar 

  40. W. Zhu, M. Deng, D. Chen, Z. Zhang, W. Chai, D. Chen, H. Xi, J. Zhang, C. Zhang, Y. Hao, Dual-phase CsPbCl3–Cs4PbCl6 perovskite films for self-powered, visible-blind UV photodetectors with fast response. ACS Appl. Mater. Interfaces 12, 32961–32969 (2020). https://doi.org/10.1021/acsami.0c09910

    Article  Google Scholar 

  41. D. Liu, B.B. Yu, M. Liao, Z. Jin, L. Zhou, X. Zhang, F. Wang, H. He, T. Gatti, Z. He, Self-powered and broadband lead-free inorganic perovskite photodetector with high stability. ACS Appl. Mater. Interfaces 12, 30530–30537 (2020). https://doi.org/10.1021/acsami.0c05636

    Article  Google Scholar 

  42. G. Yan, Z. Ji, Z. Li, B. Jiang, M. Kuang, X. Cai, Y. Yuan, W. Mai, All-inorganic Cs2AgBiBr6/CuSCN-based photodetectors for weak light imaging. Sci. China Mater. (2020). https://doi.org/10.1007/s40843-020-1358-5

    Article  Google Scholar 

  43. M. Wang, P. Zeng, Z. Wang, M. Liu, Vapor-deposited Cs2AgBiCl6 double perovskite films toward highly selective and stable ultraviolet photodetector. Adv Sci (Weinh) 7, 1903662 (2020). https://doi.org/10.1002/advs.201903662

    Article  Google Scholar 

  44. R. Xu, L. Min, Z. Qi, X. Zhang, J. Jian, Y. Ji, F. Qian, J. Fan, C. Kan, H. Wang, W. Tian, L. Li, W. Li, H. Yang, Perovskite transparent conducting oxide for the design of a transparent, flexible, and self-powered perovskite photodetector. ACS Appl. Mater. Interfaces 12, 16462–16468 (2020). https://doi.org/10.1021/acsami.0c01298

    Article  Google Scholar 

  45. X. Yang, Y. Zhu, H. Zhou, Z. Song, R. Liu, L. Shen, H. Wang, MgO/ZnO microsphere bilayer structure towards enhancing the stability of the self-powered MAPbI3 perovskite photodetectors with high detectivity. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144468

    Article  Google Scholar 

  46. X. Liu, M. Wang, F. Wang, T. Xu, Y. Li, X. Peng, H. Wei, Z. Guan, Z. Zang, High-performance photodetectors with X-ray responsivity based on interface modified perovskite film. IEEE Electron Dev. Lett. (2020). https://doi.org/10.1109/LED.2020.2995165

    Article  Google Scholar 

  47. M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A 7, 26421–26428 (2019). https://doi.org/10.1039/c9ta08314f

    Article  Google Scholar 

  48. X. Hu, H. Wang, M. Wang, Z. Zang, Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Sol. Energy 206, 816–825 (2020). https://doi.org/10.1016/j.solener.2020.06.057

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Research Program of Shenzhen (no. JCYJ20170412154447469), National Natural Science Foundation of China (nos. 61675147, 61735010 and 91838301), National Key Research and Development Program of China (no. 2017YFA0700202), and Beiyang yong junior faculties of Tianjin University (no. 2019XRG-0056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yating Zhang or Jianquan Yao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Zhang, Y., Li, T. et al. High-performance self-powered perovskite photodetector for visible light communication. Appl. Phys. A 126, 869 (2020). https://doi.org/10.1007/s00339-020-04056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04056-6

Keywords

Navigation