Skip to main content
Log in

Theoretical and experimental study of FeSi on magnetic and phase properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, the structural, magnetic, and theoretical analysis of the Fe–Si alloy prepared by melting and heat-treated was performed. The ordered FeSi simple cubic (sc) phase was obtained by melting and heat treatment processes as determined by X-ray diffraction. The presence of the superstructure peak in the (312) crystalline direction confirms the high structural order reached. Using Mössbauer spectrometry (MS), a paramagnetic behavior with quadrupole splitting of SQ = 0.53 ± 0.02 mm/s was obtained. Although MS indicates paramagnetic behavior, vibrating sample magnetometry (VSM) showed ferromagnetic behavior with a coercive field of 25 Oe, associated with a small amount of Fe3Si segregations detected by scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). Using density functional theory (DFT), the crystalline structures for the simple cubic (sc) Fe50Si50, face-centered cubic (fcc) Fe3Si, and body-centered cubic (bcc) Fe3Si crystalline structures were simulated. Electron total density values were calculated to perform energetic comparisons with magnetic behavior. The electronic structures and magnetic properties of the Fe–Si alloys in different stoichiometric configurations were calculated by CASTEP, which employed first principles DFT. The density of states (DOS) and band structures were calculated together with magnetic properties. The results showed that the high value of the polarization spin for the fcc and bcc structures is due to the contribution of the high amount of Fe atoms above the Si atoms, which is reflected in an increase in the magnetic moment and that their presence could explain the ferromagnetic behavior observed by VSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Reyes, Y. Arredondo, O. Navarro, First principles study of the effects of disorder in the Sr2FeMoO6 perovskite. Rev. Mex. Física. 62(2),160–163 (2016)

    Google Scholar 

  2. R. Zeller, Spin-polarized DFT calculations and magnetism. Comput. Nanosci. do it yourself 31, 419 (2006)

    Google Scholar 

  3. A. García Escorial et al., Ball milling mechanical alloying in the Fe100-xSix system. Mater. Sci. Eng. A 134, 1394–1397 (1991)

    Article  Google Scholar 

  4. E. Gaffet, N. Malhouroux, M. Abdellaoui, Far from equilibrium phase transition induced by solid-state reaction in the FeSi system. J. Alloys Compd. 194(2), 339–360 (1993)

    Article  Google Scholar 

  5. B. Zuo, T. Sritharan, Ordering and grain growth in nanocrystalline Fe75Si25 alloy. Acta Mater. 53(4), 1233–1239 (2005)

    Article  ADS  Google Scholar 

  6. J.F. Piamba, R.R. Rodríguez, G.A. Pérez Alcazar, Mössbauer and xrd study of the Fe0.5 Si0.5 system produced by mechanical alloying and sinterization. Rev. Mex. Física 58(2), 88–92 (2012)

    Google Scholar 

  7. W. Moffatt, in The handbook of binary phase diagrams, ed. by N.Y. Schenectady. General Electric Co. Corporate Research and Development Technology Marketing Operation (1981)

  8. Y. Jing, Y. Xu, J.P. Wang, Fabrication of Heuslar Fe3Si nanoparticles. J. Appl. Phys. 105(7), 1–4 (2009)

    Google Scholar 

  9. M. Shaban, K. Nomoto, S. Izumi, T. Yoshitake, Characterization of near-infrared n-type Β-FeSi2/p-type Si heterojunction photodiodes at room temperature. Appl. Phys. Lett. 94(22), 3–6 (2009)

    Article  Google Scholar 

  10. M. Shaban, H. Kondo, K. Nakashima, T. Yoshitake, Electrical and photovoltaic properties of n-type nanocrystalline-FeSi2/p-type Si heterojunctions prepared by facing-targets direct-current sputtering at room temperature. Jpn. J. Appl. Phys. 47(7 PART 1), 5420–5422 (2008)

    Article  ADS  Google Scholar 

  11. E.E. Fullerton et al., Magnetic decoupling in sputtered Fe/Si superlattices and multilayers. J. Appl. Phys. 73(10), 6335–6337 (1993)

    Article  ADS  Google Scholar 

  12. A.I. Al-Sharif, M. Abu-Jafar, A. Qteish, Structural and electronic structure properties of FeSi: the driving force behind the stability of the B20 phase. J. Phys. Condens. Matter 13(12), 2807–2815 (2001)

    Article  ADS  Google Scholar 

  13. E. Carvajal, R. Oviedo-Roa, M. Cruz-Irisson, O. Navarro, First-principles study of Fe–Mo double perovskites. Rev. Mex. Fis. 58, 171–173 (2012)

    Google Scholar 

  14. R. Masrour, A. Jabar, Ground state and magnetic phase transitions of the spin Lieb nanolattice: Monte Carlo simulations. Phys. A Stat. Mech. Appl. 491, 843–851 (2018)

    Article  MathSciNet  Google Scholar 

  15. Y. Gu, J. He, X. Zhan, Z. Ji, Y. Zhang, C. Zhou, Density functional calculations on electronic and magnetic properties of Fe–Pt systems. Mater. Sci. Forum 475–479(IV), 3103–3106 (2005)

    Article  Google Scholar 

  16. V. Cardoso Schwindt, M. Sandoval, J.S. Ardenghi, P. Bechthold, E.A. González, P.V. Jasen, Electronic structure and magnetism on FeSiAl alloy: a DFT study. J. Magn. Magn. Mater. 389, 73–76 (2015)

    Article  ADS  Google Scholar 

  17. S. Nazir, N. Ikram, S.A. Siddiqi, Y. Saeed, A. Shaukat, A.H. Reshak, First principles density functional calculations of half-metallic ferromagnetism in Zn1-xCrxS and Cd1-xCrxS. Curr. Opin. Solid State Mater. Sci. 14(1), 1–6 (2010)

    Article  ADS  Google Scholar 

  18. J. Teillet, F. Varret, Mosfit Program. Unpublished, University of Le Maine

  19. A.C. Larson, R.B. Von Dreele, General structure analysis system (GSAS). Los Alamos National Laboratory Report (2004)

  20. S.J. Clark et al., First principles methods using CASTEP. Zeitschrift für Kristallographie 220, 567–570 (2005)

    ADS  Google Scholar 

  21. M.D. Segall et al., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14(11), 2717–2744 (2002)

    Article  ADS  Google Scholar 

  22. A.D. Corso, A.M. Conte, Spin-orbit coupling with ultrasoft pseudopotentials: application to Au and Pt. Phys. Rev. B 71(11), 115106 (2005)

    Article  ADS  Google Scholar 

  23. N.J. Mosey, E.A. Carter, Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 155123 (2007)

    Article  ADS  Google Scholar 

  24. K. Harun, N.A. Salleh, B. Deghfel, M.K. Yaakob, A.A. Mohamad, DFT + U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: a review. Results Phys. 16, 102829 (2020)

    Article  Google Scholar 

  25. J.F. Piamba, G.A. Pérez Alcázar, Effect of disorder on the structural and magnetic properties of the Fe50Si50 nanostructured system. J. Alloys Compd. 643(S1), S297–S301 (2015). https://doi.org/10.1016/j.jallcom.2014.12.277

    Article  Google Scholar 

  26. W.A. Hines et al., Magnetization studies of binary and ternary alloys based on Fe3Si. Phys. Rev. B 13(9), 4060–4068 (1976)

    Article  ADS  Google Scholar 

  27. S. Torkan, A. Ataie, H. Abdizadeh, S. Sheibani, Effect of milling energy on preparation of nano-structured Fe70Si30 alloys. Powder Technol. 267, 145–152 (2014)

    Article  Google Scholar 

  28. G.A. Pasquevich, P.M. Zélis, M.B. Van Fernández Raap, F.H. Sánchez, Hyperfine field temperature dependence of Fe3Si from Mössbauer thermal scans. Phys. B Condens. Matter 354(1), 369–372 (2004)

    Article  ADS  Google Scholar 

  29. S. Thamm, J. Hesse, A simple plot indicating interactions between single-domain particles. J. Magn. Magn. Mater. 154(2), 254–262 (1996)

    Article  ADS  Google Scholar 

  30. M.K. Horton, J.H. Montoya, M. Liu, K.A. Persson, High-throughput prediction of the ground-state collinear magnetic order of inorganic materials using density functional theory. npj Comput. Mater. (2019). https://doi.org/10.1038/s41524-019-0199-7

    Article  Google Scholar 

  31. Y. Shin, D. Anh Tuan, Y. Hwang, T. Viet Cuong, S. Cho, Formation and ferromagnetic properties of FeSi thin films. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4800839

    Article  Google Scholar 

  32. K.A. Bush et al., Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3(2), 428–435 (2018)

    Article  Google Scholar 

  33. K.I. Sakai, T. Sonoda, S.I. Hirakawa, K. Takeda, T. Yoshitake, Current-induced magnetization switching in Fe3Si/FeSi2 artificial lattices. Jpn. J. Appl. Phys. 51(2 PART 1), 028004 (2012). https://doi.org/10.1143/JJAP.51.028004

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CENM (Centro de Excelencia en Nuevos Materiales) and Universidad del Valle for their financial support through research project “Study of FeSi (sc) phase and electronic simulation by DFT”. R. Hernández Bravo and J.M González Carmona thanks to Dirección de Cátedras CONACyT for the financial support granted during the elaboration of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Piamba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piamba, J.F., Ortega, C., Hernández-Bravo, R. et al. Theoretical and experimental study of FeSi on magnetic and phase properties. Appl. Phys. A 126, 849 (2020). https://doi.org/10.1007/s00339-020-04038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04038-8

Keywords

Navigation