Skip to main content
Log in

AC conductivity, complex impedance and photocatalytic applications of Co2+ substituted Mg–Zn nanoferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper is focused on the investigation of dielectric parameters, optical properties, and photocatalytic activity of Mg0.8Zn0.2−xCoxFe2O4 (MZCFO) nanoferrites upon the substitution of Co2+ ions range (0 ≤ x ≤ 0.2; step 0.04). The dielectric constant, dielectric loss, and ac conductivity variations, with frequency for all MZCFO samples, can be interpreted based on Maxwell–Wagner interfacial polarization. The lowest value of dielectric loss (~ 0.45) was recorded for the ferrite sample, with x = 0.08 at room temperature and a frequency of 5 MHz. The dielectric constant, dielectric loss, and ac conductivity were found to adopt a climbing trend with raising the temperature. The impedance formalism showed a decrease in the grain boundaries resistance (Rgb) with increasing Co2+ content and was calculated by implementing the Cole–Cole plot. The UV–Vis spectrum, along with Tauc’s equation, was used to estimate the bandgap of MZCFO ferrite nanoparticles, which was found to tune successfully with the addition of Co2+ ions from 1.96 to 1.81 eV. This finding gives escalation to the enhancement of photocatalytic activity, and degradation efficiency of MB dyes under the illumination of visible-light experiences an increase from 65 to 95% with increasing the addition of the nanoferrite with (x = 0.2). The optimum properties of the nanoferrite Mg0.8Co0.2Fe2O4, such as the high dielectric constant along with high conductivity, besides its ability for MB degradation, and so a peak success in water-treatment applications is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Satalkar, S.N. Kane, J. Phys. Conf. Ser. 755, 012050 (2016)

    Google Scholar 

  2. A.M. Mohammad, S.M. Ali Ridha, T.H. Mubarak, Dig. J. Nanomater. Biostruct. 13, 615 (2018)

    Google Scholar 

  3. D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Chem. Chem. Phys. 19, 210 (2017)

    Google Scholar 

  4. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, J. Alloys Compd. 684, 569 (2016)

    Google Scholar 

  5. R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, J. Phys. Chem. Solids 110, 87 (2017)

    ADS  Google Scholar 

  6. S. Irfan, Y. Shen, S. Rizwan, H.C. Wang, S.B. Khan, C.W. Nan, R.J. Xie, J. Am. Ceram. Soc. 100, 31 (2017)

    Google Scholar 

  7. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    ADS  Google Scholar 

  8. H. Al-Jawhari, R. Al-Murashi, L. Abu Saba, N. Alhebshi, R. Altuwirqi, Mater. Lett. 254, 233 (2019)

    Google Scholar 

  9. C. Cui, L. Xu, T. Xie, T. Peng, Mater. Technol. 31, 454 (2016)

    Google Scholar 

  10. E.C. Devi, I. Soibam, Indian J. Sci. Technol. 10, 1 (2017)

    Google Scholar 

  11. S.F. Mansour, R. Al-Wafi, M.A. Abdo, J. Alloys Compd. 826, 154125 (2020)

    Google Scholar 

  12. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, J. Alloys Compd. 731, 1256 (2018)

    Google Scholar 

  13. N.S. Al-Bassami, S.F. Mansour, M.A. Abdo, J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05562-7

    Article  Google Scholar 

  14. S.G. Bachhav, A.A. Patil, D.R. Patil, Adv. Ceram. Sci. Eng. 2, 89 (2013)

    Google Scholar 

  15. A. Yadav, D. Varshney, J. Supercond. Nov. Magn. 30, 1297 (2017)

    Google Scholar 

  16. S.F. Mansour, A. Dawood, M.A. Abdo, J. Mater. Sci. Mater. Electron. 30, 17262 (2019)

    Google Scholar 

  17. M.M. Ismail, N.A. Jaber, Iraqi J. Phys. 16, 140 (2018)

    Google Scholar 

  18. S.F. Mansour, M.A. Abdo, S.M. Alwan, Ceram. Int. 44, 8035 (2018)

    Google Scholar 

  19. K.C. Kao, Dielectric Phenomena in Solids (Elsevier Academic Press, California, 2004)

    Google Scholar 

  20. N. Singh, A. Agarwal, S. Sanghi, S. Khasa, J. Magn. Magn. Mater. 324, 2506 (2012)

    ADS  Google Scholar 

  21. K. Verma, A. Kumar, D. Varshney, Curr. Appl. Phys. 13, 467 (2013)

    ADS  Google Scholar 

  22. S.F. Mansour, F. Al-hazmi, M.A. Abdo, J. Alloys Compd. 792, 626 (2019)

    Google Scholar 

  23. O.M. Hemeda, M.M. Barakat, Magn. Magn. Mater. 223, 127 (2001)

    ADS  Google Scholar 

  24. S.F. Mansour, M.A. Abdo, J. Magn. Magn. Mater. 428, 300 (2017)

    ADS  Google Scholar 

  25. D.L. Sekulic, Z.Z. Lazarevic, M.V. Sataric, C.D. Jovalekic, N.Z. Romcevic, J. Mater. Sci. Mater. Electron. 26, 1291 (2015)

    Google Scholar 

  26. S.F. Mansour, O.M. Hemeda, M.A. Abdo, W.A. Nada, J. Mol. Struct. 1152, 207 (2018)

    ADS  Google Scholar 

  27. S. Supriya, S. Kumar, M. Kar, J. Mater. Sci. Mater. Electron. 28, 10652 (2017)

    Google Scholar 

  28. K. Verma, A. Kumar, D. Varshney, J. Alloys Compd. 526, 91 (2012)

    Google Scholar 

  29. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, J. Appl. Phys. 108, 034101 (2010)

    ADS  Google Scholar 

  30. R. Bhowmik, N. Naresh, Int. J. Eng. Sci. Technol. 2, 40 (2011)

    Google Scholar 

  31. M.A. Ali, M.M. Uddin, M.N.I. Khan, F.U.Z. Chowdhury, S.M. Haque, J. Magn. Magn. Mater. 424, 148–154 (2017)

    ADS  Google Scholar 

  32. A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Pittsburgh, 2006)

    Google Scholar 

  33. N. Varalaxmi, J. Mater. Sci. Eng. 8, 1000527 (2019)

    Google Scholar 

  34. B. Srinivasa Rao, B. Rajesh Kumar, V. Rajagopal Reddy, T. Subba Rao, G. Venkata Chalapathi, Chalcogenide Lett. 9, 517 (2012)

    Google Scholar 

  35. M. Dhiman, B. Chudasama, V. Kumar, K.B. Tikoo, S. Singhal, Ceram. Int. 45, 3698–3709 (2019)

    Google Scholar 

  36. Naima Zarrin, Shahid Husain, Wasi Khan, Samiya Manzoor, J. Alloy. Compd. 784, 541–555 (2019)

    Google Scholar 

  37. M.T. Jamil, J. Ahmad, S.H. Bukhari, T. Sultan, M.Y. Akhter, H. Ahmad, G. Murtaza, J. Ovonic Res. 13, 45 (2017)

    Google Scholar 

  38. C.B.N. Kadiyala, M. Wuppulluri, Phase Transit. 90, 847 (2017)

    Google Scholar 

  39. S.K. Rashmi, H.S. Bhojya Naik, H. Jayadevappa, R. Viswanath, S.B. Patil, M. Madhukara Naik, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 225, 86 (2017)

    Google Scholar 

  40. R. Sharma, P. Thakur, M. Kumar, P. Sharma, V. Sharma, J. Alloys Compd. 746, 532 (2018)

    Google Scholar 

  41. G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S.A. Antony, J. Mol. Struct. 1119, 39 (2016)

    ADS  Google Scholar 

  42. Y. Shao, Z. Pang, L. Wang, X. Liu, Molecules 24, 2874 (2019)

    Google Scholar 

  43. A.A.A. Qahtan, S. Husain, A. Somvanshi, W. Khan, Y.K. Manea, J. Mater. Sci. Mater. Electron. 31, 9335–9351 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Mansour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Bassami, N.S., Mansour, S.F. AC conductivity, complex impedance and photocatalytic applications of Co2+ substituted Mg–Zn nanoferrite. Appl. Phys. A 127, 38 (2021). https://doi.org/10.1007/s00339-020-04022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04022-2

Keywords

Navigation