Skip to main content

Advertisement

Log in

In-vitro antibacterial and anti-biofilm efficiencies of chitosan-encapsulated zinc ferrite nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, nanoparticle (NP)-encapsulated surfaces have received remarkable attention as a promising antimicrobial alternate. Thereby, the present investigation focuses to develop chitosan-encapsulated zinc ferrite nanoparticles (CT-ZnFe2O4 NPs) for antibacterial and anti-biofilm efficiencies against the range of pathogens. In this study, ZnFe2O4 NPs synthesized by a sol–gel auto-combustion method are coated with a natural CT polymer. Agar well diffusion, growth kinetics and colony-forming unit measurement studies demonstrated that the CT-ZnFe2O4 NPs behave excellent antibacterial agent against both Gram-positive and Gram-negative bacteria. Subsequently, their inhibitory effect on biofilm formation and removal of established biofilm are also been evaluated. Obtained results demonstrated that the CT-ZnFe2O4 NPs inhibit the biofilm formation more than 65% and reduce established biofilm up to 50% at a respective minimum inhibitory concentration (MIC). Promising findings of this study suggest an exciting opportunity in antimicrobial therapy like antibacterial coatings that wound care and target drug delivery in biofilm treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Aslam, W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, M.H. Rasool, M.A. Nisar, R.F. Alvi, M.A. Aslam, M.U. Qamar, M.K.F. Salamat, Antibiotic resistance: a rundown of a global crisis. Inf. Drug Resist. 11, 1645–1658 (2018)

    Google Scholar 

  2. J.M. Blair, M.A. Webber, A.J. Baylay, D.O. Ogbolu, L.J. Piddock, Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13(1), 42–51 (2015)

    Google Scholar 

  3. Z. Khatoon, C.D. McTiernan, E.J. Suuronen, T.F. Mah, E.I. Alarcon, Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4(12), e01067 (2018)

    Google Scholar 

  4. L.K. Vestby, T. Grønseth, R. Simm, L.L. Nesse, Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 9(2), 59 (2020)

    Google Scholar 

  5. H.A. Hemeg, Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 12, 8211 (2017)

    Google Scholar 

  6. N.Y. Lee, P.R. Hsueh, W.C. Ko, Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 10, 1153 (2019)

    Google Scholar 

  7. E. Hoseinzadeh, P. Makhdoumi, P. Taha, H. Hossini, J. Stelling, M.A. Kamal, A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr. Drug Metab. 18(2), 120–128 (2017)

    Google Scholar 

  8. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotech. 15(1), 65 (2017)

    Google Scholar 

  9. S. Qayyum, A.U. Khan, Nanoparticles vs. biofilms: a battle against another paradigm of antibiotic resistance. MedChemComm 7(8), 1479–1498 (2016)

    Google Scholar 

  10. P. Singh, S. Pandit, M. Beshay, V.R.S.S. Mokkapati, J. Garnaes, M.E. Olsson, A. Sultan, A. Mackevica, R.V. Mateiu, H. Lütken, A.E. Daugaard, Anti-biofilm effects of gold and silver nanoparticles synthesized by the Rhodiola rosea rhizome extracts. Artif Cells Nanomed Biotechnol 46(3), S886–S899 (2018)

    Google Scholar 

  11. C. Ashajyothi, K.H. Harish, N. Dubey, R.K. Chandrakanth, Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: a nanoscale approach. J. Nanostruct. Chem. 6(4), 329–341 (2016)

    Google Scholar 

  12. Y. Suresh, S. Annapurna, A.K. Singh, A. Chetana, C. Pasha, G. Bhikshamaiah, Characterization and evaluation of anti-biofilm effect of green synthesized copper nanoparticles. Mater. Today Proc. 3(6), 1678–1685 (2016)

    Google Scholar 

  13. O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, A. Kahru, Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87(7), 1181–1200 (2013)

    Google Scholar 

  14. M. Ajdary, M.A. Moosavi, M. Rahmati, M. Falahati, M. Mahboubi, A. Mandegary, S. Jangjoo, R. Mohammadinejad, R.S. Varma, Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials 8(9), 634 (2018)

    Google Scholar 

  15. J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7, 2767 (2012)

    Google Scholar 

  16. A. Viswanathan, J. Rangasamy, R. Biswas, Functionalized antibacterial nanoparticles for controlling biofilm and intracellular infections. Surface modification of nanoparticles for targeted drug delivery, (Springer, Cham) pp. 183–206 (2019).

  17. B.R. Rizeq, N.N. Younes, K. Rasool, G.K. Nasrallah, Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. Int. J. Mol. Sci. 20(22), 5776 (2019)

    Google Scholar 

  18. M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144(1), 51–63 (2010)

    Google Scholar 

  19. V.K.H. Bui, D. Park, Y.C. Lee, Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers 9(1), 21 (2017)

    Google Scholar 

  20. M. M. AbdElhady, Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int. J. Carbohydr. Chem., 2012 (2012).

  21. M. Arakha, S. Pal, D. Samantarrai, T.K. Panigrahi, B.C. Mallick, K. Pramanik, B. Mallick, S. Jha, Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 5, 14813 (2015)

    ADS  Google Scholar 

  22. A. Shrifian-Esfahni, M.T. Salehi, M. Nasr-Esfahni, E. Ekramian, Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. Chemik 69(1), 19–32 (2015)

    Google Scholar 

  23. P. Nehra, R.P. Chauhan, N. Garg, K. Verma, Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br. J. Biomed. Sci. 75(1), 13–18 (2018)

    Google Scholar 

  24. R. Thaya, B. Malaikozhundan, S. Vijayakumar, J. Sivakamavalli, R. Jeyasekar, S. Shanthi, B. Vaseeharan, P. Ramasamy, A. Sonawane, Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb. Pathog. 100, 124–132 (2016)

    Google Scholar 

  25. G.S. Dhillon, S. Kaur, S.K. Brar, Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int. Nano Lett. 4(2), 107 (2014)

    Google Scholar 

  26. Y. Tan, S. Ma, M. Leonhard, D. Moser, G.M. Haselmann, J. Wang, D. Eder, B. Schneider-Stickler, Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohyd. Polym. 200, 35–42 (2018)

    Google Scholar 

  27. S.F. Shi, J.F. Jia, X.K. Guo, Y.P. Zhao, D.S. Chen, Y.Y. Guo, X.L. Zhang, Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. Int. J. Nanomed. 11, 6499 (2016)

    Google Scholar 

  28. M.A. Mohammed, J. Syeda, K.M. Wasan, E.K. Wasan, An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4), 53 (2017)

    Google Scholar 

  29. S. Mandal, S. Natarajan, A. Tamilselvi, S. Mayadevi, Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment. J. Env. Chem. Engg. 4(3), 2706–2712 (2016)

    Google Scholar 

  30. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, Microstructure, porosity and magnetic properties of Zn0.5Co0.5Fe2O4/SiO2 nanocomposites prepared by sol–gel method using different polyols. J. Magn. Magn. Mat. 498, 166168 (2020)

    Google Scholar 

  31. T. Dippong, D. Toloman, E.A. Levei, O. Cadar, A. Mesaros, A possible formation mechanism and photocatalytic properties of CoFe2O4/PVA-SiO2 nanocomposites. Thermochim. Acta 666, 103–115 (2018)

    Google Scholar 

  32. S. Kanagesan, M. Hashim, S.A.B. Aziz, I. Ismail, S. Tamilselvan, N.B. Alitheen, M.K. Swamy, B.P.C. Rao, Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method. Appl. Sci. 6(9), 184 (2016)

    Google Scholar 

  33. S.M. Hoque, M.S. Hossain, S. Choudhury, S. Akhter, F. Hyder, Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications. Mat. Lett. 162, 60–63 (2016)

    Google Scholar 

  34. D. Lachowicz, W. Górka, A. Kmita, A. Bernasik, J. Żukrowski, W. Szczerba, M. Sikora, C. Kapusta, S. Zapotoczny, Enhanced hyperthermic properties of biocompatible zinc ferrite nanoparticles with a charged polysaccharide coating. J. Mat. Chem. B 7(18), 2962–2973 (2019)

    Google Scholar 

  35. V.J. Sawant, S.R. Bamane, R.V. Shejwal, S.B. Patil, Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells. J. Magn. Magn. Mat. 417, 222–229 (2016)

    ADS  Google Scholar 

  36. R.P. Sharma, S.D. Raut, V.V. Jadhav, A.S. Kadam, R.S. Mane, Anti-candida and anti-adhesion efficiencies of zinc ferrite nanoparticles. Mat. Lett. 237, 165–167 (2019)

    Google Scholar 

  37. A. Esmaeili, S. Ghobadianpour, Vancomycin loaded superparamagnetic MnFe2O4 nanoparticles coated with PEGylated chitosan to enhance antibacterial activity. Int. J. Pharm. 501(1–2), 326–330 (2016)

    Google Scholar 

  38. M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6(2), 71–79 (2016)

    Google Scholar 

  39. C.H. Barros, H. Devlin, D.W. Hiebner, S. Vitale, L. Quinn, E. Casey, Enhancing curcumin’s solubility and antibiofilm activity via silica surface modification. Nanoscale Adv. 2(4), 1694–1708 (2020)

    ADS  Google Scholar 

  40. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, G. Borodi, Formation of CoFe2O4/PVA-SiO2 nanocomposites: effect of diol chain length on the structure and magnetic properties. Ceram. Int. 44(9), 10478–10485 (2018)

    Google Scholar 

  41. S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27), 12871–12934 (2018)

    Google Scholar 

  42. M. Ignat, P. Samoila, C. Cojocaru, L. Sacarescu, V. Harabagiu, Novel synthesis route for chitosan-coated zinc ferrite nanoparticles as potential sorbents for wastewater treatment. Chem. Engg. Comm. 203(12), 1591–1599 (2016)

    Google Scholar 

  43. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, F. Goga, G. Borodi, L. Barbu-Tudoran, Influence of polyol structure and molecular weight on the shape and properties of Ni0.5Co0.5Fe2O4 nanoparticles obtained by sol–gel synthesis. Ceram. Int. 45(6), 7458–7467 (2019)

    Google Scholar 

  44. N. Sanpo, C.C. Berndt, C. Wen, J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater. 9(3), 5830–5837 (2013)

    Google Scholar 

  45. H.S. Joo, M. Otto, Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem. Bio. 19(12), 1503–1513 (2012)

    Google Scholar 

  46. D. Gingasu, I. Mindru, L. Patron, A. Ianculescu, E. Vasile, G. Marinescu, S. Preda, L. Diamandescu, O. Oprea, M. Popa, C. Saviuc, Synthesis and characterization of chitosan-coated cobalt ferrite nanoparticles and their antimicrobial activity. J. Inorg. Organomet. Poly. Mat. 28(5), 1932–1941 (2018)

    Google Scholar 

  47. G. Kravanja, M. Primožič, Ž. Knez, M. Leitgeb, Chitosan-based (Nano) materials for novel biomedical applications. Molecules 24(10), 1960 (2019)

    Google Scholar 

  48. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017)

    Google Scholar 

  49. M. S. R. Rajoka, H. M. Mehwish, Y. Wu, L. Zhao, Y. Arfat, K. Majeed, S. Anwaar, Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. Crit. Rev. Biotech., pp. 1–15 (2020).

  50. M.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)

    Google Scholar 

  51. A.H. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M.M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Google Scholar 

  52. R.P. Sharma, S.D. Raut, R.M. Mulani, A.S. Kadam, R.S. Mane, Sol–gel auto-combustion mediated cobalt ferrite nanoparticles: a potential material for antimicrobial applications. Int. Nano Lett. 9(2), 141–147 (2019)

    Google Scholar 

  53. R.K. Sharma, R. Ghose, Synthesis and characterization of nanocrystalline zinc ferrite spinel powders by homogeneous precipitation method. Ceram. Int. 41(10), 14684–14691 (2015)

    Google Scholar 

  54. X. Xie, C. Mao, X. Liu, L. Tan, Z. Cui, X. Yang, S. Zhu, Z. Li, X. Yuan, Y. Zheng, K.W.K. Yeung, Tuning the band gap of photo-sensitive polydopamine/Ag3PO4/graphene oxide coating for rapid, non invasive disinfection of implants. ACS Cent. Sci. 4(6), 724–738 (2018)

    Google Scholar 

  55. C. Kaweeteerawat, A. Ivask, R. Liu, H. Zhang, C.H. Chang, C. Low-Kam, H. Fischer, Z. Ji, S. Pokhrel, Y. Cohen, D. Telesca, Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Env. Sci. Tech. 49(2), 1105–1112 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Director of UGC-DAE-CSR for allowing the EDAX facility. Thanks to Dr. D. M. Phase and V. K. Ahire for allowing time slot for performing the experiments and providing data.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rashmi P. Sharma or Rajaram S. Mane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.P., Raut, S.D., Kadam, A.S. et al. In-vitro antibacterial and anti-biofilm efficiencies of chitosan-encapsulated zinc ferrite nanoparticles. Appl. Phys. A 126, 824 (2020). https://doi.org/10.1007/s00339-020-04007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04007-1

Keywords

Navigation