Skip to main content
Log in

Electron mobility influenced by optical phonons in AlGaN/GaN MISHEMTs with different gate dielectrics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electron mobility influenced by optical phonons in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with different gate dielectrics around room temperature is investigated theoretically. The electronic states are obtained by the finite difference method in consideration of built-in electric fields and the conduction band bending. The optical phonons are analyzed using the dielectric continuum model. Based on the theory of force balance equation, the electron mobility of two-dimensional electron gas is obtained for the structures with four different gate dielectrics of Al2O3, HfO2, SiO2 and Si3N4. Our results show that the electron mobility is the highest in HfO2 systems when Al composition in AlGaN is small, whereas the mobility is the highest in Al2O3 systems as Al composition increases to a certain value. The effects of the ternary mixed crystals, each layer’s size and the fixed charges on the sheet density and electron mobility are also discussed for different gate dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.Q. Zhang, P.F. Wang, AlN/GaN metal-insulator-semiconductor high-electron-mobility transistor with thermal atomic layer deposition AlN gate dielectric. Jpn. J. Appl. Phys. 57, 096502 (2018)

    ADS  Google Scholar 

  2. S. Zhang, K. Wei, X.H. Ma, B. Hou, Reduced reverse gate leakage current for GaN HEMTs with 3 nm Al/40 nm SiN passivation layer. Appl. Phys. Lett. 114, 013503 (2019)

    ADS  Google Scholar 

  3. N. Ma, D. Jena, Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014)

    Google Scholar 

  4. S.Q. Wang, G.D. Mahan, Electron scattering from surface excitations. Phys. Rev. B 6, 4517 (1972)

    ADS  Google Scholar 

  5. K. Hess, P. Vogl, Remote polar phonon scattering in silicon inversion layers. Solid State Commun. 30, 807 (1979)

    ADS  Google Scholar 

  6. B.T. Moore, D.K. Ferry, Remote polar phonon scattering in Si inversion layers. J. Appl. Phys. 51, 2603 (1980)

    ADS  Google Scholar 

  7. M.V. Fischetti, D.A. Neumayer, E.A. Cartier, Effective electron mobility in Si inversion layers in Metal-oxide-semiconductor systems with a high-k insulator: the role of remote phonon scattering. J. Appl. Phys. 90, 4587 (2001)

    ADS  Google Scholar 

  8. A.M. Sonnet, R.V. Galatage, P.K. Hurley, E. Pelucchi, K. Thomas, A. Gocalinska, J. Huang, N. Goel, G. Bersuker, W.P. Kirk, C.L. Hinkle, E.M. Vogel, Remote phonon and surface roughness limited universal electron mobility of In0.53Ga0.47As surface channel MOSFETs. Microelectron. Eng. 88, 1083 (2011)

    Google Scholar 

  9. U. Singisetti, Surface optical phonon scattering in N-polar GaN quantum well channels, arXiv: Mesoscale and Nanoscale Physics, (2013), https://arxiv.org/ftp/arxiv/papers/1307/1307.6405.pdf

  10. B. K. Ridley, Electrons and phonons in semiconductor multilayers, First Published (Cambridge University Press, 1997), pp. 184–243

  11. T.H. Hung, M. Esposto, S. Rajan, Interfacial charge effects on electron transport in III-Nitride metal insulator semiconductor transistors. Appl. Phys. Lett. 99, 162104 (2011)

    ADS  Google Scholar 

  12. X.W. Liu, D. Ji, Y.W. Lu, Scattering induced by Al segregation in AlGaN/GaN heterostructures. Appl. Phys. Lett. 107, 072105 (2015)

    ADS  Google Scholar 

  13. B.K. Ridley, Electrons and phonons in semiconductor multilayers, First Published (Cambridge University Press, 1997), pp. 4–10

  14. N. Mori, T. Ando, Electron-optical-phonon interaction in single and double heterostructures. Phys. Rev. B 40, 6175 (1989)

    ADS  Google Scholar 

  15. K.W. Kim, M.A. Stroscio, Electron-optical-phonon interaction in binary/ternary heterostructures. J. Appl. Phys. 68, 6289 (1990)

    ADS  Google Scholar 

  16. B.C. Lee, K.W. Kim, M. Dutta, M.A. Stroscio, Electron-optical-phonon scattering in wurtzite crystals. Phys. Rev. B 56, 997 (1997)

    ADS  Google Scholar 

  17. Y. Qu, S.L. Ban, Ternary mixed crystal effect on electron mobility in a strained wurtzite AlN/GaN/AlN quantum well with an InxGa1-xN nanogroove. J. Appl. Phys. 110, 013722 (2011)

    ADS  Google Scholar 

  18. Z. Gu, S.L. Ban, D.D. Jiang, Y. Qu, Effects of two-mode transverse optical phonons in bulk wurtzite AlGaN on electronic mobility in AlGaN/GaN quantum wells. J. Appl. Phys. 121, 035703 (2017)

    ADS  Google Scholar 

  19. K. Park, A. Mohamed, M. Dutta, M.A. Stroscio, C. Bayram, Electron scattering via interface optical phonons with high group velocity in wurtzite GaN-based quantum well heterostructure. Sci. Rep. 8, 15947 (2018)

    ADS  Google Scholar 

  20. D. Ji, B. Liu, Y. Lu, G. Liu, Q. Zhu, Z. Wang, Polarization-induced remote interfacial charge scattering in Al2O3/AlGaN/GaN double heterojunction high electron mobility transistors. Appl. Phys. Lett. 100, 132105 (2012)

    ADS  Google Scholar 

  21. X.J. Zhou, Z. Gu, S.L. Ban, Z.P. Wang, Electronic mobility limited by optical phonons in Al2O3/AlGaN/GaN double heterojunctions. J. Appl. Phys. 120, 125706 (2016)

    ADS  Google Scholar 

  22. P. Kordoš, D. Gregušová, R. Stoklas, K. Čičo, J. Novák, Improved transport properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor. Appl. Phys. Lett. 90, 123513 (2007)

    ADS  Google Scholar 

  23. Z.H. Liu, G.I. Ng, S. Arulkumaran, Y.K.T. Maung, K.L. Teo, S.C. Foo, V. Sahmuganathan, Improved two-dimensional electron gas transport characteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor with atomic layer-deposited Al2O3 as gate insulator. Appl. Phys. Lett. 95, 223501 (2009)

    ADS  Google Scholar 

  24. B.C. Lee, K.W. Kim, M.A. Stroscio, M. Dutta, Optical-phonon confinement and scattering in wurtzite heterostructures. Phys. Rev. B 58, 4860 (1998)

    ADS  Google Scholar 

  25. M.B. Nardelli, K. Rapcewicz, J. Bernholc, Strain effects on the interface properties of nitride semiconductors. Phys. Rev. B 55, R7323 (1997)

    ADS  Google Scholar 

  26. O. Ambacher, J. Smart, R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222 (1999)

    ADS  Google Scholar 

  27. X.L. Lei, L. Joseph, C.S. Ting, Two-dimensional balance equations in nonlinear electronic transport and application to GaAs-GaAlAs heterojunctions. J. Appl. Phys. 58, 2270 (1985)

    ADS  Google Scholar 

  28. X.L. Lei, C.S. Ting, Green’s-function approach to nonlinear electronic transport for an electron-impurity-phonon system in a strong electric field. Phys. Rev. B 32, 1112 (1985)

    ADS  Google Scholar 

  29. J.Q. Wu, When group-III nitrides go infrared: new properties and perspectives. J. Appl. Phys. 106, 011101 (2009)

    ADS  Google Scholar 

  30. M.L. Huang, Y.C. Chang, C.H. Chang, T.D. Lin, J. Kwo, T.B. Wu, M. Hong, Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure. Appl. Phys. Lett. 89, 012903 (2006)

    ADS  Google Scholar 

  31. S. Monaghan, P.K. Hurley, K. Cherkaoui, M.A. Negara, A. Schenk, Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures. Solid-State Electron. 53, 438 (2009)

    ADS  Google Scholar 

  32. B. Brar, G.D. Wilk, A.C. Seabaugh, Direct extraction of the electron tunneling effective mass in ultrathin SiO2. Appl. Phys. Lett. 69, 2728 (1996)

    ADS  Google Scholar 

  33. V.A. Gritsenko, E.E. Meerson, Y.N. Morokov, Thermally assisted hole tunneling at the Au-Si3N4 interface and the energy-band diagram of metal-nitride-oxide-semiconductor structures. Phys. Rev. B 57, R2081 (1998)

    ADS  Google Scholar 

  34. V.V. Afanas’ev, A. Stesmans, F. Chen, X. Shi, S.A. Campbell, Internal photoemission of electrons and holes from (100) Si into HfO2. Appl. Phys. Lett. 81, 1053 (2002)

    ADS  Google Scholar 

  35. G.D. Wilk, R.M. Wallace, J.M. Anthony, High-k gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001)

    ADS  Google Scholar 

  36. J.D. Casperson, L.D. Bell, H.A. Atwater, Materials issues for layered tunnel barrier structures. J. Appl. Phys. 92, 261 (2002)

    ADS  Google Scholar 

  37. C. Bungaro, K. Rapcewicz, J. Bernholc, Ab initio phonon dispersions of wurtzite AlN, GaN, and InN. Phys. Rev. B 61, 6720 (2000)

    ADS  Google Scholar 

  38. Y.C. Yeo, Q. Lu, W.C. Lee, T. King, C. Hu, X. Wang, X. Guo, T.P. Ma, Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric. IEEE Electron Device Lett. 21, 540 (2000)

    ADS  Google Scholar 

  39. W.J. Zhu, T.P. Ma, T. Tamagawa, J. Kim, Y. Di, Current transport in metal/hafnium oxide/silicon structure. IEEE Electron Device Lett. 23, 97 (2002)

    ADS  Google Scholar 

  40. A. Zoroddu, F. Bernardini, P. Ruggerone, V. Fiorentini, First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory. Phys. Rev. B 64, 045208 (2001)

    ADS  Google Scholar 

  41. S.P. Łepkowski, Nonlinear elasticity effect in group III-nitride quantum heterostructures: ab initio calculations. Phys. Rev. B 75, 195303 (2007)

    ADS  Google Scholar 

  42. H.W. Jang, C.M. Jeon, K.H. Kim, J.K. Kim, S.B. Bae, J.H. Lee, J.W. Choi, J.L. Lee, Mechanism of two-dimensional electron gas formation in AlGaN/GaN heterostructures. Appl. Phys. Lett. 81, 1249 (2002)

    ADS  Google Scholar 

  43. J.Z. Zhang, A. Dyson, B.K. Ridley, Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures. Phy. Rev. B 84, 155310 (2011)

    ADS  Google Scholar 

  44. F. Husna, M. Lachab, M. Sultana, V. Adivarahan, Q. Fareed, A. Khan, High-temperature performance of AlGaN/GaN MOSHEMT with SiOgate insulator fabricated on Si (111) substrate. IEEE Trans. Electron Devices. 59, 2424 (2012)

    ADS  Google Scholar 

  45. X.Z. Dang, E.T. Yu, E.J. Piner, B.T. McDermott, Influence of surface processing and passivation on carrier concentrations and transport properties in AlGaN/GaN heterostructures. J. Appl. Phys. 90, 1357 (2001)

    ADS  Google Scholar 

  46. S. Ganguly, J. Verma, W.L. Guo, T. Zimmermann, H. Xing, D. Jena, Presence and origin of interface charges at atomic-layer deposited Al2O3/III-nitride heterojunctions. Appl. Phys. Lett. 99, 193504 (2011)

    ADS  Google Scholar 

  47. M. Esposto, S. Krishnamoorthy, D.N. Nath, S. Bajaj, T.H. Hung, S. Rajan, Electrical properties of atomic layer deposited aluminum oxide on gallium nitride. Appl. Phys. Lett. 99, 133503 (2011)

    ADS  Google Scholar 

  48. H. Hahn, C. Funck, S. Geipel, H. Kalisch, A. Vescan, The III-nitride double heterostructure revisited: benefits for threshold voltage engineering of MIS devices. IEEE Trans. Electron Devices. 63, 606 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 61764012), the Natural Science Foundations of Inner Mongolia Autonomous Region (Grant Nos. 2016MS0619 and 2018MS01019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiliang Ban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, Z., Qu, Y. et al. Electron mobility influenced by optical phonons in AlGaN/GaN MISHEMTs with different gate dielectrics. Appl. Phys. A 126, 825 (2020). https://doi.org/10.1007/s00339-020-04005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04005-3

Keywords

Navigation