Skip to main content
Log in

Determination of some optoelectrical and thermodynamic parameters of β-lithium ammonium sulphate crystals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

β-Lithium ammonium sulphate single crystals were grown by slow evaporation solution growth technique. The X-ray diffraction analysis shows that the crystals have an orthorhombic crystal structure with P21cn space group. From the UV–visible spectroscopy, the high transmittance and low reflectance nature of grown crystals was observed. The various optoelectrical parameters like refractive index, extinction coefficient, optical conductivity, electronic polarizability, optical electronegativity and optical band gap were evaluated from the optical transmittance and reflectance data. The Clausius–Mossotti equation and band gap approach were used to calculate the electronic polarizability. The dispersion constants were calculated using Wemple–DiDomenico model and Cauchy dispersion relation. Optical and chemical hardness has been also discussed in terms of polarizability and band gap of the crystals. Some basic thermodynamical variables were also calculated from the thermal analysis. To calculate the activation energy for the decomposition step in these crystals, the Coats–Redfern integral method was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.K. Ridley, Large-band gap semiconductors. Turk. J. Phys. 23, 577–582 (1999)

    Google Scholar 

  2. B.K. Ridley, Quantum Processes in Semiconductors (Oxford University Press, Oxford, 2013)

    MATH  Google Scholar 

  3. S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr. Appl. Phys. 10, 145–152 (2010)

    ADS  Google Scholar 

  4. S.H. Deshmukh, D.K. Burghate, S.N. Shilaskar, G.N. Chaudhari, P.T. Deshmukh, Optical properties of polyaniline doped PVC-PMMA thin films, Indian. J. Pure appl. Phys. 46, 344–348 (2008)

    Google Scholar 

  5. S.V. Melnikova, A.V. Kartashev, V.A. Grankina, I.A. Flerov, Investigation of the reconstructive phase transition between metastable (α) and stable (β) modifications of the NH4LiSO4 crystal. Phys. Solid State 45, 1572–1578 (2003)

    ADS  Google Scholar 

  6. T. Mitsui, T. Oka, Y. Shiroishi, M. Takashige, K. Iio, S. Sawada, Ferroelectricity in NH4LiSO4. J. Phys. Soc. Jpn. 39, 845–846 (1975)

    ADS  Google Scholar 

  7. B.O. Hildmann, T. Hahn, L.E. Cross, R.E. Newnham, Lithium ammonium sulphate, a polar ferroelastic which is not simultaneously ferroelectric. Appl. Phys. Lett. 27, 103–104 (1975)

    ADS  Google Scholar 

  8. A.I. Kruglik, M.A. Simonov, K.S. Alexandrov, Crystal-structure of low-temperature-3 phase of ammonium lithium-sulfate. Kristallografiya 23, 494–498 (1978)

    Google Scholar 

  9. A. Pietraszko, K. Lukaszewicz, Crystal structure of alpha-LiNH4SO4 in the basic polytypic modification. Pol. J. Chem. 66, 2057–2061 (1992)

    Google Scholar 

  10. K. Itoh, H. Ishikura, E. Nakamura, Disordered structure of ferroelectric ammonium lithium sulphate in the high-temperature phase. Acta Crystallogr. B 37, 664–666 (1981)

    Google Scholar 

  11. W.A. Dollase, NH4LiSO4. A variant of the general tridymite structure. Acta Crystallogr. B 25, 2298–2302 (1969)

    Google Scholar 

  12. M.A. Gaffar, G.A. Mohamed, A.A. El-Fadl, A.M. Mebed, Thermal properties of pure and doped lithium-ammonium sulphate single crystals. Phys. B 205, 224–230 (1995)

    ADS  Google Scholar 

  13. M.A. Gaffar, A.A. El Fadl, G.A. Mohamed, Specific heat and electrical resistivity of pure and doped lithium-ammonium sulphate single crystals. Phys. B 217, 274–284 (1996)

    ADS  Google Scholar 

  14. V.I. Yuzvak, L.I. Zherebtsova, V.B. Shkuryaeva, I.P. Aleksandrova, Soviet. Phys. Crystallogr. 19, 480 (1975)

    Google Scholar 

  15. H. Shimizu, A. Oguri, N. Yasuda, S. Fujimoto, Effects of hydrostatic pressure on the I-II phase transition in an improper ferroelectric NH4LiSO4. J. Phys. Soc. Jpn. 45, 565–570 (1978)

    ADS  Google Scholar 

  16. S. Krishanan, C.J. Raj, R. Robert, A. Ramannand, S.J. Das, Mechanical, theoretical and dielectric studies on ferroelectric lithium ammonium sulphate (LAS) single crystals. Solid State Electron. 52, 1157–1161 (2008)

    ADS  Google Scholar 

  17. K.S. Aleksandrov, I.P. Aleksandrova, A.T. Anistratov, V.E. Shabanov, Studies of phase transitions and physical properties of LINH4SO4. Izv. ANSSSR ser. flz. 41, 599 (1977)

    Google Scholar 

  18. I.P. Aleksandrova, I.S. Kabanov, S.V. Melnikova, T.I. Chekmasova, V.I. Yuzvak, Soviet. Phys. Solid State 19, 605 (1977)

    Google Scholar 

  19. J.J. Gilman, Chemical and physical hardness. Mater. Res. Innov. 1, 71–76 (1997)

    Google Scholar 

  20. R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Google Scholar 

  21. W. Yang, R.G. Parr, Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. 82, 6723–6726 (1985)

    ADS  Google Scholar 

  22. C. Joseph, M.A. Ittyachen, Growth and characterization of a new metal-organic crystal: potassium thiourea bromide. Mater. Lett. 49, 299–302 (2001)

    Google Scholar 

  23. V. Venkataramanan, S. Maheswaran, J.N. Sherwood, H.L. Bhat, Crystal growth and physical characterization of the semiorganic bis (thiourea) cadmium chloride. J. Cryst. Growth 179, 605–610 (1997)

    ADS  Google Scholar 

  24. G. Anbazhagan, P.S. Joseph, G. Shankar, Optical reflectance, optical refractive index and optical conductivity measurements of nonlinear optics for L-aspartic acid nickel chloride single crystal. Optics Commun. 291, 304–308 (2013)

    ADS  Google Scholar 

  25. M.Y. Rudysh, V.Y. Stadnyk, R.S. Brezvin, P.A. Shchepanskii, Energy band structure of LiNH4SO4 crystals. Phys. Solid State 57, 53–58 (2015)

    ADS  Google Scholar 

  26. V. Krishnakumar, R. Nagalakshmi, Crystal growth and vibrational spectroscopic studies of the semiorganic non-linear optical crystal—bisthiourea zinc chloride. Spectrochim. Acta A 61, 499–502 (2005)

    ADS  Google Scholar 

  27. V. Krishnakumar, R.J. Xavier, FT Raman and FT–IR spectral studies of 3-mercapto-1, 2, 4-triazole. Spectrochim. Acta A 60, 709–714 (2004)

    ADS  Google Scholar 

  28. D.P. Gosain, T. Shimizu, M. Suzuki, Some properties of Sb2Te3−xSex for nonvolatile memory based on phase transition. J. Mater. Sci. 26, 3271–3274 (1991)

    ADS  Google Scholar 

  29. D.J. Gravesteijn, Materials developments for write-once and erasable phase-change optical recording. Appl. Opt. 27, 736–738 (1988)

    ADS  Google Scholar 

  30. M.Y. Rudysh, M.G. Brik, O.Y. Khyzhun, A.O. Fedorchuk, I.V. Kityk, P.A. Shchepanskyi, V.Y. Stadnyk, G. Lakshminarayana, R.S. Brezvin, Z. Bak, M. Piasecki, Ionicity and birefringence of α-LiNH4SO4 crystals: ab initio DFT study, X-ray spectroscopy measurements. RSC Adv. 7, 6889–6901 (2017)

    Google Scholar 

  31. M.Y. Rudysh, M.G. Brik, V.Y. Stadnyk, R.S. Brezvin, P.A. Shchepanskyi, A.O. Fedorchuk, O.Y. Khyzhun, I.V. Kityk, M. Piasecki, Ab initio calculations of the electronic structure and specific optical features of β-LiNH4SO4 single crystals. Phys. B 528, 37–46 (2018)

    ADS  Google Scholar 

  32. Q. Shen, K. Katayama, T. Sawada, T. Toyoda, Characterization of electron transfer from CdSe quantum dots to nanostructured TiO2 electrode using a near-field heterodyne transient grating technique. Thin Solid Films 516, 5927–5930 (2008)

    ADS  Google Scholar 

  33. P. Sharma, V. Sharma, S.C. Katyal, Variation of optical constants in Ge10Se60Te30 thin film. Chalcogenide Lett. 3, 73–79 (2006)

    Google Scholar 

  34. F. Abeles, Optical Properties of Solids (North-Holland Publishing Company, Amsterdam, 1972)

    MATH  Google Scholar 

  35. J.N. Zemel, J.D. Jensen, R.B. Schoolar, Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe. Phys. Rev. A 140, 330 (1965)

    ADS  Google Scholar 

  36. S. Gedi, V.R.M. Reddy, C. Park, J. Chan-Wook, K.T.R. Reddy, Comprehensive optical studies on SnS layers synthesized by chemical bath deposition. Opt. Mater. 42, 468–475 (2015)

    ADS  Google Scholar 

  37. I. Saadeddin, B. Pecquenard, J.P. Manaud, R. Decourt, C. Labrugere, T. Buffeteau, G. Campet, Synthesis and characterization of single-and co-doped SnO2 thin films for optoelectronic applications. Appl. Surf. Sci. 253, 5240–5249 (2007)

    ADS  Google Scholar 

  38. F. Lai, L. Lin, R. Gai, Y. Lin, Z. Huang, Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data. Thin Solid Films 515, 7387–7392 (2007)

    ADS  Google Scholar 

  39. M.F. Al-Kuhaili, Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Opt. Mater. 27, 383–387 (2004)

    ADS  Google Scholar 

  40. S.H. Wemple, M. DiDomenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)

    ADS  Google Scholar 

  41. S.H. Wemple, M. DiDomenico, Optical dispersion and the structure of solids. Phys. Rev. Lett. 23, 1156–1160 (1969)

    ADS  Google Scholar 

  42. A. Lucarelli, S. Lupi, P. Calvani, P. Maselli, G. DeMarzi, P. Roy, N.L. Saini, A. Bianconi, T. Ito, K. Oka, Optical conductivity of the nonsuperconducting cuprate La8ÀxSrxCu8O20. Phys. Rev. B 65, 54511–54521 (2002)

    ADS  Google Scholar 

  43. E.I. Ugwu, A.S. Olayinka, F.I. Olabode, Analysis of wave propagation in a homogeneous dielectric crystal. J. Eng. Appl. Sci. 4, 126–131 (2009)

    Google Scholar 

  44. T. Arumanayagam, P. Murugakoothan, Growth, linear and nonlinear optical studies on guanidinium 4-nitrobenzoate (GuNB): an organic NLO material. Optik 123, 1153–1156 (2012)

    ADS  Google Scholar 

  45. M. Abdel Rafea, A.A.M. Farag, N. Roushdy, Structural and optical characteristics of nano-sized structure of Zn0.5Cd0.5S thin films prepared by dip-coating method. J. Alloys Compd. 485, 660–666 (2009)

    Google Scholar 

  46. M. Abdel-Baki, F. Abdel-Wahab, A. Radi, F. El-Diasty, Factors affecting optical dispersion in borate glass systems. J. Phys. Chem. Solids 68, 1457–1470 (2007)

    ADS  Google Scholar 

  47. J.S.Q. Zeng, R. Greif, P. Stevens, M. Ayers, A. Hunt, Effective optical constants n and κ and extinction coefficient of silica aerogel. J. Mater. Res. 11, 687–693 (1996)

    ADS  Google Scholar 

  48. M.N. Azlan, M.K. Halimah, S.Z. Shafinas, W.M. Daud, Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Mat. Expr. 5, 211–218 (2015)

    Google Scholar 

  49. N.M. Ravindra, V.K. Srivastava, Electronic polarizability as a function of the penn gap in semiconductors. Infrared Phys. 20, 67–69 (1980)

    ADS  Google Scholar 

  50. R.R. Reddy, Y.N. Ahammed, M.R. Kumar, Variation of magnetic susceptibility with electronic polarizability in compound semiconductors and alkali halides. J. Phys. Chem. Solids 56, 825–829 (1995)

    ADS  Google Scholar 

  51. J.A. Duffy, Trends in energy gaps of binary compounds: an approach based upon electron transfer parameters from optical spectroscopy. J. Phys. C Solid State 13, 2979–2989 (1980)

    ADS  Google Scholar 

  52. J.A. Duffy, Bonding Energy Levels and Bonds in Inorganic Solids, Longman Scientific and Technical, England, 1990.

  53. R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, C.V.K. Reddy, S.N. Ahmed, Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides. Opt. Mater. 31, 209–212 (2008)

    ADS  Google Scholar 

  54. R.R. Reddy, Y.N. Ahammed, Relationship between refractive index, optical electronegativities and electronic polarizability in alkali halides, III–V, II–VI group semiconductors. Cryst. Res. Technol. 30, 263–266 (1995)

    Google Scholar 

  55. R.G. Parr, W. Yang, Density functional theory of atoms and molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  56. R.S. Mulliken, A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Phys. Chem. 2, 782–793 (1934)

    Google Scholar 

  57. T. Brinck, J.S. Murray, P. Politzer, Polarizability and volume. J. Chem. Phys. 98, 4305–4306 (1993)

    ADS  Google Scholar 

  58. W.A. Harrison, Electronic structure and the properties of solids (Dover Publications, New York, 1989)

    Google Scholar 

  59. J.K. Nagle, Atomic polarizability and electronegativity. J. Amer. Chem. Soc. 112, 4741–4747 (1990)

    Google Scholar 

  60. P.W. Atkins, Molecular Quantum Mechanics, 2nd edn. (Oxford University Press, Oxford, 1983)

    Google Scholar 

  61. F.A. Najar, G.B. Vakil, B. Want, optoelectrical behavior of ferroelectric lithium rubidium sulfate crystals. J. Electron. Mater. 47, 6411–6419 (2018)

    ADS  Google Scholar 

  62. A. Lunden, Evidence for and against the paddle-wheel mechanism of ion transport in superionic sulphate phases. Solid State Commun. 65, 1237–1240 (1988)

    ADS  Google Scholar 

  63. J.A. Banday, F.A. Mir, M.A. Qurishi, S. Koul, T.K. Razdan, Isolation, structural, spectral, and thermal studies of imperatorin micro-crystals from Prangospabularia. J. Therm. Anal. Calorim. 112, 1165–1170 (2013)

    Google Scholar 

  64. W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964)

    ADS  Google Scholar 

  65. A. Khawam, D.R. Flangan, Role of isoconversional methods in varying activation energies of solid state kinetics. Thermochim. Acta 436, 101–112 (2005)

    Google Scholar 

Download references

Acknowledgements

FAN is highly thankful to the UGC-DAE CSR Indore and SAIF centre Cochin for providing the experimental facilities. FAM would also thank the UGC Delhi for a startup project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayaz A. Najar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najar, F.A., Naik, M.M., Mir, F.A. et al. Determination of some optoelectrical and thermodynamic parameters of β-lithium ammonium sulphate crystals. Appl. Phys. A 126, 797 (2020). https://doi.org/10.1007/s00339-020-03981-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03981-w

Keywords

Navigation