Skip to main content
Log in

Structural health monitoring for polymer composites with surface printed MXene/ink sensitive sensors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, a novel sensor with high sensitivity and linear was prepared based on two-dimensional (2D) material (MXene) and ink, which can be used for deformation and damage monitoring of structural composites. The MXene was efficiently prepared by etching Ti3AlC2 powder with LiF–HCl solution and subsequent vacuum drying. The viscosity and adhesion of MXene/ink composites were controlled by changing the ratio of solvent (dimethyl sulfoxide) to ink. The MXene/ink was printed on the surface of the composite material to avoid forming defects in the composite material. The percolation threshold of the MXene/ink nanocomposite was relatively low, 3.6wt%. In this paper, MXene/ink composites with different contents were selected as the sensor, and the characteristics of the sensor were verified through monotone stretch and cyclic load-and-unload tests. When the MXene content just exceeds the percolation threshold (4wt%), the gauge factor (GF) of the sensor is higher, the results of monotonic tensile experiment show that there are two different sensitive stages of linear change (0 ~ 0.477%) and (0.477 ~ 1.37%), and the range GF is116.6 and 554.3, respectively. In addition, the linear relationship and sensitivity of the sensor remained stable after loading and unloading tensile tests. MXene/ink sensor has a broad application prospect in damage monitoring of aerospace structural composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig.6
Fig.7
Fig.8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Moriche, A. Jiménez-Suárez, M. Sánchez, S.G. Prolongo, A. Ureña, Graphene nanoplatelets coated glass fibre fabrics as strain sensors. Compos SciTechnol 2, 6 (2017)

    Google Scholar 

  2. S.-J. Joo, M.-H. Yu, E.-B. Jeon, H.-S. Kim, In situ fabrication of copper electrodes on carbon-fiber-reinforced polymer (CFRP) for damage monitoring by printing and flash light sintering. Compos SciTechnol 142, 189–197 (2017)

    Google Scholar 

  3. K. Aly, A. Li, P.D. Bradford, Strain sensing in composites using aligned carbon nanotube sheets embedded in the interlaminar region. Compos A ApplSciManuf 90, 536–548 (2016)

    Google Scholar 

  4. Y. Song, A. Hehr, V. Shanov, N. Alvarez, N. Kienzle, J. Cummins, D. Koester, M. Schulz, Carbon nanotube sensor thread for distributed strain and damage monitoring on IM7/977-3 composites. Smart Mater Struct 23(23), 075008 (2014)

    ADS  Google Scholar 

  5. X. Wang, D.D.L. Chung, Continuous carbon fibre epoxy-matrix composite as a sensor of its own strain. Smart Mater Struct 5(6), 796 (1996)

    ADS  MathSciNet  Google Scholar 

  6. A.F. Omar, Fiber Optic Sensors: An Introduction for Engineers and Scientists (John Wiley and SonsInc, London, 1997)

    Google Scholar 

  7. A.A. Barlian, W.T. Park, J.R. Mallon et al., Review: semiconductor piezoresistance for microsystems[J]. IEEE 97(3), 513–552 (2009)

    Google Scholar 

  8. G. Shu Daniel et al., Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors[J]. Adv Elect Mater 44, 130–270 (2015)

    Google Scholar 

  9. B. Han, X. Yu, E. Kwon et al., Piezoresistive multi-walled carbon nanotubes filled cement-based composites[J]. Sensor Lett 8(2), 344–348 (2010)

    Google Scholar 

  10. T. Takeda, Y. Shindo, Z. Wei et al., Fatigue failure and electrical resistance behaviors of carbon nanotube-based polymer composites under uniaxial tension-tension loading in a cryogenic environment[J]. J Compos Mater 49(4), 457–463 (2015)

    Google Scholar 

  11. S. Lu, C. Tian, X. Wang et al., Strain sensing behaviors of GnPs/epoxy sensor and health monitoring for composite materials under monotonic tensile and cyclic deformation[J]. Compos SciTechnol 158, 94–100 (2018)

    Google Scholar 

  12. C. Bonavolontà, C. Camerlingo, G. Carotenuto et al., Characterization of piezoresistive properties of graphene-supported polymer coating for strain sensor applications[J]. Physical 252, 26–34 (2016)

    Google Scholar 

  13. S. Zhang, L. Wen, H. Wang et al., Vertical CNT-Ecoflexnanofins for highly linear broad-range-detection wearable strain sensor[J]. J Mater Chem C 6, 19 (2018)

    ADS  Google Scholar 

  14. Z. Jing, Z. Guang-Yu, S. Dong-Xia, Review of graphene-based strain sensors[J]. Chin Phys B 22(5), 057701 (2013)

    ADS  Google Scholar 

  15. A.F. Flannery, N.J. Mourlas, C.W. Storment et al., PECVD silicon carbide for micromachined transducers[C]. IEEE 3, 8 (1997)

    Google Scholar 

  16. M. Naguib, M. Kurtoglu, V. Presser et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater 23(37), 4248–4253 (2011)

    Google Scholar 

  17. M. Naguib, V.N. Mochalin, M.W. Barsoum et al., 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Adv Mater 26(7), 992–1005 (2014)

    Google Scholar 

  18. F. Bonaccorso, L. Colombo, G. Yu et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science 22, 13–67 (2015)

    Google Scholar 

  19. C. Zhang, H. Yin, M. Han et al., Correction to two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors[J]. ACS Nano 8(6), 6509–6509 (2014)

    Google Scholar 

  20. Z. Hua, Ultrathin two-dimensional nanomaterials[J]. ACS Nano 9(10), 150925084953000 (2015)

    Google Scholar 

  21. G. Eda, S.A. Maier, Two-dimensional crystals: managing light for optoelectronics[J]. ACS Nano 7(7), 5660–5665 (2013)

    Google Scholar 

  22. M.W. Barsoum, MAX phases (properties of machinable ternary carbides and nitrides) mechanical properties: high temperatures[J]. Mech Prop (2013). https://doi.org/10.1002/9783527654581:363-397

    Article  Google Scholar 

  23. J. Halim, K.M. Cook, M. Naguib et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)[J]. Appl Surf Sci 1, 362 (2015)

    Google Scholar 

  24. A. Mishra, P. Srivastava, H. Mizuseki et al., Isolation of pristine MXene from Nb4AlC3 MAX phase: a first-principles study[J]. PhysChem 18, 8 (2016)

    Google Scholar 

  25. M. Naguib, V.N. Mochalin, M.W. Barsoum et al., Two-dimensional materials: 25th anniversary article: MXenes: a new family of two-dimensional materials [J]. Adv Mater 26(7), 982–982 (2014)

    Google Scholar 

  26. M. Naguib, J. Halim, J. Lu et al., New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries[J]. J Am ChemSoc 135(43), 15966–15969 (2013)

    Google Scholar 

  27. M. Ghidiu, M. Naguib, C. Shi et al., Synthesis and characterization of two-dimensional Nb4C3 (MXene)[J]. ChemCommun 50(2), 160–168 (2014)

    Google Scholar 

  28. K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chem Mater 29(4), 1632–1640 (2017)

    Google Scholar 

  29. H. Wu, L.T. Drzal, Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties[J]. Carbon 50(3), 1135–1145 (2012)

    Google Scholar 

  30. B. Lundberg, B. Sundqvist, Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment: applications as a pressure and gas concentration transducer[J]. J ApplPhys 60(3), 1074 (1986)

    ADS  Google Scholar 

  31. Y. Wang, J.W. Shan, G.J. Weng, Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J ApplPhys 118(6), 065101 (2015)

    ADS  Google Scholar 

  32. B.E. Kilbride, J.N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury et al., Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J ApplPhys 92(7), 4024–4030 (2002)

    ADS  Google Scholar 

  33. W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos SciTechnol 69(10), 1486–1498 (2009)

    Google Scholar 

  34. Q. Meng, J. Jin, R. Wang, H.C. Kuan, J. Ma, N. Kawashima et al., Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites. Nanotechnology 25(12), 125707 (2014)

    ADS  Google Scholar 

  35. N. Yousefi, M.M. Gudarzi, Q. Zheng, S.H. Aboutalebi, F. Sharif, J.-K. Kim, Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J Mater Chem 22(25), 12709 (2012)

    Google Scholar 

  36. D. Lee, H.P. Hong, C.J. Lee, C.W. Park, N.K. Min, Microfabrication and characterization of spray-coated single-wall carbon nanotube film strain gauges. Carbon Nanotube 22(45), 455301 (2011)

    Google Scholar 

  37. A. Ortega, B. Park, N.S. Kim, Printability and electrical conductivity of UV Curable MWCNT Ink[J]. J Electron Mater 44(3), 778–783 (2015)

    ADS  Google Scholar 

  38. X. Wang, J. Sparkman, J. Gou, Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling[J]. Compos Commun 3, 1–6 (2017)

    Google Scholar 

  39. A. Toldy, G. Szebényi, K. Molnár et al., The effect of multilevel carbon reinforcements on the fire performance, conductivity, and mechanical properties of epoxy composites[J]. Polymers 11, 2 (2019)

    Google Scholar 

  40. J.W. Zha, B. Zhang, R.K.Y. Li, Z.M. Dang, High-performance strain sensors based on functionalized graphene nanoplates for damage monitoring. Compos SciTechnol 123, 32–38 (2016)

    Google Scholar 

  41. L. Vertuccio, L. Guadagno, G. Spinelli, P. Lamberti, V. Tucci, S. Russo, Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures. Compos B Eng 107, 192–202 (2016)

    Google Scholar 

  42. S. Luo, W. Obitayo, T. Liu, SWCNT thin film enabled piezoresistivefiber sensors - fabrication, characterization and application for shm of polymeric composite structures[C]. StructDyn Mater Conf 4, 8–51 (2013)

    Google Scholar 

  43. Y.J. Kim, Y.C. Ju, H. Ham, H. Huh, D.S. So, I. Kang, Preparation of piezoresistive nano smart hybrid material based on graphene. CurrApplPhys 11(1), S350–S352 (2011)

    Google Scholar 

Download references

Acknowledgements

The financial contributions are gratefully acknowledged. This work was financially supported by National Natural Science Foundation of China (U1733123, 11902204), Special Professor Project in Liaoning Province, Natural science foundation of Liaoning Province (20180550751), Education Department of Liaoning’s Item (JYT19041). The financial contributions are gratefully acknowledged. Innovative Talents Project of Higher Education Institutions in Liaoning Province (LR2019052), Shenyang Youth Science and technology innovation talent project (RC190004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Ma, K., Lu, S. et al. Structural health monitoring for polymer composites with surface printed MXene/ink sensitive sensors. Appl. Phys. A 126, 791 (2020). https://doi.org/10.1007/s00339-020-03979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03979-4

Keywords

Navigation