Skip to main content
Log in

Optical and gas-sensing property enhancement of membranes based on lithium iron phosphate particles with different dispersants

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lithium iron phosphate (LiFePO4) membranes were fabricated by coating LiFePO4 particles dispersed in various dispersants on tin-diffused glass slides and alumina ceramic tubes for xylene gas detection. The influences of dispersants, including polyvinyl alcohol (PVA), sodium dodecylbenzene sulfonate (SDBS), and methyl methacrylate (MMA), on the optical properties and opto-electrical gas-sensing performance of the LiFePO4 particle-based membranes were investigated. The LiFePO4 particle-based membrane, prepared using PVA, exhibited less agglomeration, better transparency, optimum refractive index, and a higher response toward xylene gas at concentrations of 10 ppb to 1000 ppm in a planar optical waveguide sensor. However, in a resistance-type electrochemical sensing system at room temperature, the LiFePO4-PVA membrane exhibited low response even at high xylene concentrations. The membranes sensitivities increased in the order MMA < SDBS < PVA. After dispersing in PVA, the membrane sensitivity toward xylene was increased ~ 100 times, proving the positive effects of PVA on the optical properties and gas-sensing performance of LiFePO4 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Choudhury, R. Mangal, A. Agrawal, L.A. Archer, J. Nat. Commun. 6, 10101 (2015)

    Article  ADS  Google Scholar 

  2. H. Nazemi, A. Joseph, J. Park, A. Emadi, J Sens. 19, 1285 (2019)

    Article  Google Scholar 

  3. M.R. Esfahani, V.L. Pallem, H.A. Stretz, J. Environ. Nanotechnol. Monitor. Manage. (2016). https://doi.org/10.1016/j.enmm.2016.06.007

    Article  Google Scholar 

  4. K. Steffen, G. Noga, Z. Ronald, J. Colloid. Interface. Sci. (2017). https://doi.org/10.1016/j.jcis.2017.04.007

    Article  Google Scholar 

  5. A. Tricoli, N. Nasiri, S. De, Adv. Funct. Mater. 27, 1605271 (2017)

    Article  Google Scholar 

  6. G.R. Hua, P.W. Chen, Z.M. Liu, J. Alloy. Compoud. (2017). https://doi.org/10.1016/j.jallcom.2016.11.237

    Article  Google Scholar 

  7. H.C. Liu, Y.M. Wang, Ceramic. Int. (2017). https://doi.org/10.1016/j.ceramint.2016.11.144

    Article  Google Scholar 

  8. P. Nizamidin, Y. Yin, G. Turdi, A. Yimit, J. Anal. Lett. 51, 1 (2018)

    Article  Google Scholar 

  9. P. Nizamidin, A. Yimit, K. Itoh, New J. Chem. 40, 295 (2016)

    Article  Google Scholar 

  10. P. Nizamidin, A. Yimit, K. Itoh, J. Sens. Actuat. B. 176, 460 (2013)

    Article  Google Scholar 

  11. P. Nizamidin, A. Yimit, W. Jide, K. Itoh, J Thin Solid Film 520, 6250 (2012)

    Article  ADS  Google Scholar 

  12. W. Meesorn, J.O. Zoppe, C. Weder, J. Macromol. Rapid Commun. 40, 1800910 (2019)

    Article  Google Scholar 

  13. H. Yue, Y. Xiaojun, C. Shuo, Z. Jie, W. Yuanxin, J. Appl. Sur. Sci. 400, 148 (2017)

    Article  Google Scholar 

  14. H. Anjum, K. Johari, N. Gnanasundaram, A. Appusamy, M. Thanabalan, J. Clean. Prod. 221, 323 (2019)

    Article  Google Scholar 

  15. P. Bo, Y. Hongxu, Z. Weixin, Y. Zeheng, J Power Sour. 220, 317 (2012)

    Article  Google Scholar 

  16. G. Yehui, D. Mingjun, L. Tong, L. Yingwei, L. Fangmeng, J. Sens. Actuat. B 230, 61 (2016)

    Article  Google Scholar 

  17. A. Díaz-Parralejo, R. Caruso, A.L. Ortiz, F. Guiberteau, J Thin Solid Film. 458, 92 (2004)

    Article  ADS  Google Scholar 

  18. Y.A. El-Badry, K.H. Mahmoud, J. Spectrochim. Acta. A 219, 307 (2019)

    Article  ADS  Google Scholar 

  19. H. Abudukeremu, N. Kari, Z. Yuan, W. Jiaming, P. Nizamidin, S. Abliz, A. Yimit, J. Mater. Sci. 53, 10822 (2018)

    Article  ADS  Google Scholar 

  20. K.Q. Ding, H.B. Gu, C.B. Zheng, L. Liu, J. Electro. Chim. Acta. 146, 585 (2014)

    Article  Google Scholar 

  21. I.T. Lucas, A.S. McLeod, J.S. Syzdek, D.S. Middlemiss, C.P. Grey, D.N. Basov, R. Kostecki, J. Nano. Lett. 15, 1 (2015)

    Article  ADS  Google Scholar 

  22. P. R.Griffiths, J. A.de Haseth, Fourier transform infrared spectrometry, 2nd edn.(J Wiley & Sons, Inc., Hoboken, NJ, 1986)

  23. B.E. Yoldas, D.P. Partlow, J. Appl. Optic. 23, 1418 (1984)

    Article  ADS  Google Scholar 

  24. M.Y. Zhu, L. Zhang, J. Yin, B.D. Fahlman, J. Sens. Actuat. B 282, 659 (2019)

    Article  Google Scholar 

  25. A. Rianjanu, S.A. Hasanah, D.B. Nugroho, A. Kusumaatmaja, R. Roto, K. Triyana, J Chemosens. 7, 20 (2019)

    Article  Google Scholar 

  26. T. Xu, P. Xu, D. Zheng, H. Yu, X. Li, J. Anal. Chem. (2016). https://doi.org/10.1021/acs.analchem.6b03364

    Article  Google Scholar 

  27. N. Nasiri, C. Clarke, J Sens. 19, 462 (2019)

    Article  Google Scholar 

  28. A. Mirzaei, K. Jae-Hun, K.H. Woo, K.S. Sub, J. Mater. Chem. C 6, 4342 (2018)

    Article  Google Scholar 

Download references

Funding

This study was funded by the Doctoral Natural Science Foundation of Xinjiang University (Grant no. 209-61371), the University scientific research program of Xinjiang Uygur Autonomous Region (Grant no. XJEDU2019Y005) and National Natural Science Foundation of China (Grant no. 21765021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patima Nizamidin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizamidin, P., Maimaiti, P., Kari, N. et al. Optical and gas-sensing property enhancement of membranes based on lithium iron phosphate particles with different dispersants. Appl. Phys. A 126, 820 (2020). https://doi.org/10.1007/s00339-020-03973-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03973-w

Keywords

Navigation