Skip to main content
Log in

Novel ferroelectric phase in bulk BaO obtained by application of anisotropic strain

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferroelectricity is expected to be observed in alkaline earth metal oxides (BaO, MgO, CaO, and SrO) with the application of adequate strain, according to theoretical predictions by Bousquet et al. The resultant polarization, dielectric constant, and piezoelectric response would be comparable to those of typical ferroelectric materials, like perovskites. In yet another recent work, Nascimento et al. explored these theoretical predictions by simulating the behaviour of ultra-thin films of BaO under applied in-plane strain to mimic the effect of epitaxial strain induced by an adequate substrate. Effects of both in-plane compressive strain as well as temperature, varied in the ranges of 0 to − 10% and 100–1500 K, respectively, were explored in the simulations. An antipolar phase was observed for in-plane compressive strain values from 3 to 10% and a temperature range of 100 to 1500 K. However, only a compressive strain value around 9%, typically too high to be obtained by epitaxial strain, was able to produce an ordered single domain. Polarization and ferroelectricity are well known as hard to obtain in ultra-thin films due to their limited thickness. The observed existence of an antipolar phase in ultra-thin films would in principle avoid the problems associated with uncompensated surface charges created by the discontinuity of the normal polarization component at the surface. However, can ferroelectricity be obtained in thicker films or even in bulk-like BaO systems? To answer this question, we will here explore the effects of in-plane compressive strain in BaO bulk systems. Compressive in-plane strain, along both x and y directions, will be varied in 0–10% range as well as the c/a (out-of-plane/in-plane) lattice ratio for values of 1.0–1.3. The observed structural phases and associated physical properties will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.B. Karki, R.M. Wentzcovitch, S. de Gironcoli, S. Baroni, Science 286, 1705 (1999)

    Article  Google Scholar 

  2. K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11, 2757 (1996)

    Article  ADS  Google Scholar 

  3. A.R. Oganov, P.I. Dorogokupets, Phys. Rev. B 67, 224110 (2003)

    Article  ADS  Google Scholar 

  4. O. Schütt, P. Pavone, W. Windl, K. Karch, D. Strauch, Phys. Rev. B 50, 3746 (1994)

    Article  ADS  Google Scholar 

  5. M. Posternak, a Baldereschi, H. Krakauer, R. Resta, Phys. Rev. B 55, R15983 (1997)

    Article  ADS  Google Scholar 

  6. R.A. McKee, F.J. Walker, M.F. Chisholm, Science 293, 468 (2001)

    Article  ADS  Google Scholar 

  7. C.J. Först, C.R. Ashman, K. Schwarz, P.E. Blöchl, Nature 427, 53 (2003)

    Article  ADS  Google Scholar 

  8. K. Rabe, C.H. Ahn, J.-M. Triscone, Physics of Ferroelectrics, A Modern Perspective (Springer, Berlin, 2007)

    Google Scholar 

  9. E. Bousquet, N.A. Spaldin, P. Ghosez, Phys. Rev. Lett. 104, 037601 (2010)

    Article  ADS  Google Scholar 

  10. J. Junquera, P. Ghosez, Nature 422, 506 (2003)

    Article  ADS  Google Scholar 

  11. M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)

    Article  ADS  Google Scholar 

  12. S.K. Streiffer, J.A. Eastman, D.D. Fong, C. Thompson, A. Munkholm, M.V. RamanaMurty, O. Auciello, G.R. Bai, G.B. Stephenson, Phys. Rev. Lett. 89, 067601 (2002)

    Article  ADS  Google Scholar 

  13. A. Schilling, T.B. Adams, R.M. Bowman, J.M. Gregg, G. Catalan, J.F. Scott, Phys. Rev. B 74, 024115 (2006)

    Article  ADS  Google Scholar 

  14. I.I. Naumov, L. Bellaiche, H.X. Fu, Nature 432, 737 (2004)

    Article  ADS  Google Scholar 

  15. M. Krcmar, C.L. Fu, Phys. Rev. B 68, 115404 (2003)

    Article  ADS  Google Scholar 

  16. Y. Watanabe, Phys. Rev. B 57, 789 (1998)

    Article  ADS  Google Scholar 

  17. C.L. Jia, K. Urban, Science 303, 2001 (2004)

    Article  ADS  Google Scholar 

  18. J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, O.Y. Liaxn, W.S. Yun, A.M. Rappe, H. Park, Nano Lett. 6, 735 (2006)

    Article  ADS  Google Scholar 

  19. S.V. Kalinin, C.Y. Johnson, D.A. Bonnell, J. Appl. Phys. 91, 3816 (2002)

    Article  ADS  Google Scholar 

  20. S.V. Kalinin, Yunseok Kim, D.D. Fong, A.N. Morozovska, Rep. Prog. Phys. 81, 036502 (2018)

    Article  ADS  Google Scholar 

  21. V.B. Nascimento, J.P. Rino, B.V. da Costa, J. Phys. Conf. Ser. 1483, 012012 (2020)

    Article  Google Scholar 

  22. W. Li, R.K. Kalia, P. Vashishta, Phys. Rev. Lett. 77, 2241 (1996)

    Article  ADS  Google Scholar 

  23. R.C. Mota, S.C. Costa, P.S. Pizani, J.P. Rino, Phys. Rev. B 71, 224114 (2005)

    Article  ADS  Google Scholar 

  24. C. Kittel, Phys. Rev. B 82, 729 (1951)

    Article  ADS  Google Scholar 

  25. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1997)

    MATH  Google Scholar 

  26. A. Nakano, R.K. Kalia, P. Vashishta, J. Non-Cryst, Solids 171, 157 (1994)

    Google Scholar 

  27. W.G. Hoover, A.J.C. Ladd, B. Moran, Phys. Rev. Lett. 48, 1818 (1982)

    Article  ADS  Google Scholar 

  28. S. Nosé, J. Chem. Phys. 81, 511 (1982)

    Article  ADS  Google Scholar 

  29. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  30. http://lammps.sandia.gov

  31. J. Harada, T. Pedersen, Z. Barnea, Acta Crystallogr. Sect. A Cryst. Phys. Differ. Theor. Gen. Crystallogr. 26, 336 (1970)

    Article  ADS  Google Scholar 

  32. M.A. Ghebouli, B. Ghebouli, A. Bouhemadou, M. Fatmi, K. Bouamama, J. Alloy Compd. 509, 1440 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

V. B. Nascimento and B. V. Costa would like to thank FAPEMIG and CNPq for financially supporting this work. J. P. Rino acknowledges financial support from FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Nascimento.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, V.B., da Costa, B.V. & Rino, J.P. Novel ferroelectric phase in bulk BaO obtained by application of anisotropic strain. Appl. Phys. A 126, 744 (2020). https://doi.org/10.1007/s00339-020-03930-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03930-7

Keywords

Navigation