Skip to main content

Advertisement

Log in

Exploring the optical properties of lead zinc sulfide photoanodes for optoelectronics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the optical properties of alloyed lead zinc sulfide quantum dots (Pb0.8Zn0.2S QDs) photoanodes have been explored for optoelectronic applications. The alloyed QDs photoanodes were prepared by SILAR technique for different deposition cycles (0–8 times). Transmission electron microscope (TEM) and energy dispersive X-ray spectrometer (EDS) were used to investigate the morphological and elemental measurements respectively. A UV–visible spectrophotometer was utilized to study the optical properties. The obtained energy band gap (Eg) values of the prepared photoanodes vary from 1.98 to 3.32 eV as the number of the deposition cycles is increased from 1 to 8 times. The best photovoltaic performance of the assembled QDs sensitized solar cells (QDSSCs) is achieved for the 6 times SILAR deposition cycles. This result is mainly attributed to the absorption enhancement and the harmony of the energetic alignment levels of the prepared QDSSC’s layers. The prepared alloyed photoanodes could be novel candidates in many optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Badawi, Engineering the optical properties of PVA/PVP polymeric blend in situ using tin sulfide for optoelectronics. Appl. Phys. A 126(5), 335 (2020)

    ADS  Google Scholar 

  2. A. Badawi, N. Al-Hosiny, S. Abdallah, The photovoltaic performance of CdS quantum dots sensitized solar cell using graphene/TiO2 working electrode. Superlattices Microstruct. 81, 88–96 (2015)

    ADS  Google Scholar 

  3. I. Devadoss, P. Sakthivel, Effect of Mg on Cd0.9−xZn0.1S nanoparticles for optoelectronic applications. Appl. Phys. A 126 (4), 315 (2020)

  4. A. Badawi, Photoacoustic study of alloyed Cd1−xPbxS quantum dots sensitized solar cells electrodes. J. Mater. Sci. Mater. Electron. 27(8), 7899–7907 (2016)

    Google Scholar 

  5. A. Badawi, Characterization of the optical and mechanical properties of CdSe QDs/PMMA nanocomposite films. J. Mater. Sci. Mater. Electron. 26(6), 3450–3457 (2015)

    Google Scholar 

  6. Z. El-Qahtani, A. Badawi, K. Easawi, N. Al-Hosiny, S. Abdallah, Photoacoustic study of optical and thermal properties of alloyed CdTexS1−x nanocrystals. Mater. Sci. Semicond. Process. 20, 68–73 (2014)

    Google Scholar 

  7. B. Enrico, S. Marinella, S. Teresa, G. Cinzia, B. Rosaria, F. Andrea, C. Roberto, C. Michela, T. Raffaele, A. Angela, M.L. Curri, Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange. Sci. Technol. Adv. Mater. 16(5), 055007 (2015)

    Google Scholar 

  8. D. Asik, M. B. Yagci, F. Demir Duman, H. Yagci Acar, One step emission tunable synthesis of PEG coated Ag2S NIR quantum dots and the development of receptor targeted drug delivery vehicles thereof. J. Mater. Chem. B4(11), 1941–1950 (2016)

  9. A. Badawi, A.M. Al-Baradi, A.A. Atta, S.A. Algarni, A.S.A. Almalki, S.S. Alharthi, Graphene/TiO2 nanocomposite electrodes sensitized with tin sulfide quantum dots for energy issues. Phys. E 121, 114121 (2020)

    Google Scholar 

  10. H.T. Tung, D. Van Thuan, J.H. Kiat, D.H. Phuc, Ag+ ion doped on the CdSe quantum dots for quantum-dot-sensitized solar cells’ application. Appl. Phys. A 125(8), 505 (2019)

    ADS  Google Scholar 

  11. A. Badawi, W.O. Al-Gurashi, A.M. Al-Baradi, N. Al-Hosiny, Alloying cadmium cobalt sulfide quantum dots for solar cells applications. Mater. Sci. Semicond. Process. 95, 1–6 (2019)

    Google Scholar 

  12. A. Badawi, N. Al-Hosiny, S. Abdallah, H. Talaat, Tuning photocurrent response through size control of CdSe quantum dots sensitized solar cells. Mater. Sci. Poland 31(1), 6–13 (2013)

    ADS  Google Scholar 

  13. A. Badawi, Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications. Superlattices Microstruct. 90, 124–131 (2016)

    ADS  Google Scholar 

  14. R. John, Tuning of energy band gaps in ternary semiconductors. Adv. Mater. Res. 31, 164–166 (2008)

    Google Scholar 

  15. Y. Liang, X. Zhong, H. Song, Y. Zhang, D. Zhang, Y. Zhang, J. Wang, Study of photovoltaic performance of Sb2S3/CdS quantum dot co-sensitized solar cells fabricated using iodine-based gel polymer electrolytes. Appl. Phys. A 124(8), 537 (2018)

    ADS  Google Scholar 

  16. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Sol. Energy 88, 137–143 (2013)

    ADS  Google Scholar 

  17. A. Badawi, Effect of the non-toxic Ag2S quantum dots size on their optical properties for environment-friendly applications. Phys. E 109, 107–113 (2019)

    Google Scholar 

  18. S. Chand, A. Dahshan, N. Thakur, V. Sharma, P. Sharma, Alloyed Ag2SexS1-x quantum dots with red to NIR shift: The band gap tuning with dopant content for energy harvesting applications. Infrared Phys. Technol. 105, 103162 (2020)

    Google Scholar 

  19. N. Al-Hosiny, S. Abdallah, A. Badawi, K. Easawi, H. Talaat, The photovoltaic performance of alloyed CdTexS1−x quantum dots sensitized solar cells. Mater. Sci. Semicond. Process. 26, 238–243 (2014)

    Google Scholar 

  20. D.A. Reddy, D.H. Kim, S.J. Rhee, B.W. Lee, C. Liu, Tunable blue-green-emitting wurtzite ZnS: Mg nanosheet-assembled hierarchical spheres for near-UV white LEDs. Nanoscale Res. Lett. 9(20), 1–8 (2014)

    ADS  Google Scholar 

  21. S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J. Mater. Sci. Mater. Electron. 27(5), 4163–4171 (2016)

    Google Scholar 

  22. M. Azhin, S. Salah Raza, A. Omed Gh, Synthesis of very-fine PbS nanoparticles dispersed homogeneously in MC matrix: Effect of concentration on the structural and optical properties of host polymer. Mater. Res. Exp. (2019)

  23. E. Rabinovich, E. Wachtel, G. Hodes, Chemical bath deposition of single-phase (Pb, Cd)S solid solutions. Thin Solid Films 517(2), 737–744 (2008)

    ADS  Google Scholar 

  24. X. Pan, Z. Ye, J. Li, X. Gu, Y. Zeng, H. He, L. Zhu, Y. Che, Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition. Appl. Surf. Sci. 253(11), 5067–5069 (2007)

    ADS  Google Scholar 

  25. G.-L. Tan, L. Liu, W. Wu, Mid-IR band gap engineering of CdxPb1−xS nanocrystals by mechanochemical reaction. AIP Adv. 4(6), 067107 (2014)

    ADS  Google Scholar 

  26. S. Wang, W. Dong, X. Fang, S. Wu, R. Tao, Z. Deng, J. Shao, L. Hu, J. Zhu, CdS and CdSe quantum dot co-sensitized nanocrystalline TiO2 electrode: Quantum dot distribution, thickness optimization, and the enhanced photovoltaic performance. J. Power Sources 273, 645–653 (2015)

    ADS  Google Scholar 

  27. R. Premarani, J. Jebaraj Devadasan, S. Saravanakumar, R. Chandramohan, T. Mahalingam, Structural, optical and magnetic properties of Ni-doped CdS thin films prepared by CBD. J. Mater. Sci. Mater. Electron. 26(4), 2059–2065 (2015)

  28. A. Badawi, W.O. Al-Gurashi, A.M. Al-Baradi, F. Abdel-Wahab, Photoacoustic spectroscopy as a non-destructive technique for optical properties measurements of nanostructures. Optik 201, 163389 (2020)

    ADS  Google Scholar 

  29. A. Badawi, S.S. Alharthi, N.Y. Mostafa, M.G. Althobaiti, T. Altalhi, Effect of carbon quantum dots on the optical and electrical properties of polyvinylidene fluoride polymer for optoelectronic applications. Appl. Phys. A 125(12), 858 (2019)

    ADS  Google Scholar 

  30. A. Badawi, Tunable energy band gap of Pb1-xCoxS quantum dots for optoelectronic applications. Superlattices Microstruct. 125, 237–246 (2019)

    ADS  Google Scholar 

  31. F.S. Mirahmadi, M. Marandi, M. Karimipour, M. Molaei, Microwave activated synthesis of Ag2S and Ag2S@ZnS nanocrystals and their application in well-performing quantum dot sensitized solar cells. Sol. Energy 202, 155–163 (2020)

    ADS  Google Scholar 

  32. M.P.A. Muthalif, C.D. Sunesh, Y. Choe, Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. J. Colloid Interface Sci. 534, 291–300 (2019)

    ADS  Google Scholar 

  33. A. Badawi, Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide. Chin. Phys. B 24(4), 47205–047205 (2015)

    Google Scholar 

  34. Y.-L. Lee, C.-H. Chang, Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. J. Power Sources 185(1), 584–588 (2008)

    ADS  Google Scholar 

  35. A. Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab, S.E. Alomairy, Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J. Mater. Sci. Mater. Electron. 28(15), 10877–10884 (2017)

    Google Scholar 

  36. N. F. Mott, E. A. Davis, Electronic processes in non-crystalline materials, 2nd ed. (Clarendon Press; Oxford University Press, Oxford; New York, 1979).

  37. N.Y. Mostafa, A. Badawi, S.I. Ahmed, Influence of Cu and Ag doping on structure and optical properties of In2O3 thin film prepared by spray pyrolysis. Results Phys. 10, 126–131 (2018)

    ADS  Google Scholar 

  38. O. Madelung, Semiconductors: data handbook, 3rd edn. (Springer-Verlag, Berlin, 2004), p. 691

    Google Scholar 

  39. K. Paulraj, S. Ramaswamy, I.S. Yahia, A.M. Alshehri, H.H. Somaily, H.-S. Kim, A. Kathalingam, Praseodymium doped PbS thin films for optoelectronic applications prepared by nebulizer spray pyrolysis. Appl. Phys. A 126(7), 503 (2020)

    ADS  Google Scholar 

  40. J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V.A.L. Roy, W. Zhang, C.-S. Lee, Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications. Nano Lett. 11, 4138–4143 (2011)

    ADS  Google Scholar 

  41. A. Badawi, A. H. Al Otaibi, A. M. Albaradi, N. Al-Hosiny, S. E. Alomairy, Tailoring the energy band gap of alloyed Pb1−xZnxS quantum dots for photovoltaic applications. J. Mater. Sci. Mater. Electron. 29(24), 20914–20922 (2018)

  42. B. Pejova, A. Tanusˇevski, I. Grozdanov, Semiconducting thin films of zinc selenide quantum dots. J. Solid State Chem. 177, 4785–4799 (2004)

    ADS  Google Scholar 

  43. A. Badawi, N. Al-Hosiny, A. Merazga, A.M. Albaradi, S. Abdallah, H. Talaat, Study of the back recombination processes of PbS quantum dots sensitized solar cells. Superlattices Microstruct. 100, 694–702 (2016)

    ADS  Google Scholar 

  44. W. Ma, J.M. Luther, H. Zheng, Y. Wu, A.P. Alivisatos, Photovoltaic Devices employing ternary PbSxSe1-x nanocrystals. Nano Lett. 9(4), 1699–1703 (2009)

    ADS  Google Scholar 

  45. A. Merazga, F. Al-Subai, A.M. Albaradi, A. Badawi, A.Y. Jaber, A.A.B. Alghamdi, Effect of sol-gel MgO spin-coating on the performance of TiO2-based dye-sensitized solar cells. Mater. Sci. Semicond. Process. 41, 114–120 (2016)

    Google Scholar 

  46. W. Lee, J. Lee, S.K. Min, T. Park, W. Yi, S.-H. Han, Effect of single-walled carbon nanotube in PbS/TiO2 quantum dots-sensitized solar cells. Mater. Sci. Eng., B 156(1–3), 48–51 (2009)

    Google Scholar 

  47. J. Duan, H. Zhang, Q. Tang, B. He, L. Yu, Recent advances in critical materials for quantum dot-sensitized solar cells: a review. J. Mater. Chem. A 3(34), 17497–17510 (2015)

    Google Scholar 

  48. Z. Zhang, Y. Yang, J. Gao, S. Xiao, C. Zhou, D. Pan, G. Liu, X. Guo, Highly efficient Ag2Se quantum dots blocking layer for solid-state dye-sensitized solar cells: size effects on device performances. Mater. Today Energy 7, 27–36 (2018)

    Google Scholar 

  49. H. Zhao, Q. Wu, J. Hou, H. Cao, Q. Jing, R. Wu, Z. Liu, Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays. Sci. China Mater. 60(3), 239–250 (2017)

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Deanship of Scientific Research, Taif University, KSA [research project number: 1-440-6136]. We sincerely acknowledge the useful discussion of Prof. Dr. Fouad Abdul-Wahab at Aswan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A., Al Otaibi, A.H., Al-Baradi, A.M. et al. Exploring the optical properties of lead zinc sulfide photoanodes for optoelectronics. Appl. Phys. A 126, 726 (2020). https://doi.org/10.1007/s00339-020-03923-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03923-6

Keywords

Navigation