Skip to main content
Log in

Investigation of macrosegregation for different dendritic arm spacing, casting temperature, and thermal boundary conditions in a direct-chill casting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The study of macrosegregation for different dendritic arm spacing, casting temperature, and cooling conditions in a Direct-Chill (DC) casting was investigated in the present study. The velocity variance-elliptic relaxation (\( \overline{{v^{2} }} - f \)) turbulence model was used to account for the turbulence effect in the bulk liquid and slurry region. The thermosolutal effect was implemented in the bulk liquid and slurry flow. The Scheil’s solute redistribution model was used to account for solute partitioning at the solidification interfaces. The pressure-based segregated time-dependent solver was used in the solution method to solve the flow equations. The model validation indicates loawer transition thickness due to: (1) efficient damping of the flow in the slurry zone by the turbulence viscous forces, (2) effective handling of the kinematic wall blocking effects in the vicinity of the slurry zone, and (3) strong mixing of the turbulent fluid motion that tends to decrease the distance between the solidus and liquidus isotherm. In all the cases investigated, it was evident that the thermal boundary condition at the secondary cooling zone, casting inlet temperature and secondary Dendritic Arm Spacing (DAS) affect the segregation ratio both at the centerline and the billet surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\({A}_\text{mush}\) :

Mushy zone parameter

a:

Discretization coefficient

abs:

Absolute value

\(c\) :

Species concentration

c:

Specific heat capacity J/Kg/K

d :

Is the secondary dendritic arm spacing (μm)

\({D}\) :

Ass diffusivity (m2/s)

\({D}_{t}\) :

Eddy mass diffusivity (m2/s)

f :

Mass fraction

f :

Elliptic relaxation

\({f}_{\mu }\) :

Viscous damping function

\({F}_{\mu }\) :

Switching function

\({f}_{k}\) :

Another switching function

\(g\) :

Fraction

g :

Acceleration due to gravity (m2/s)

\({g}\) :

Volume fraction

h :

Heat transfer coefficient W/\({\mathrm{m}}^{2}/K\)

k :

Turbulent kinetic energy (m2/s2

\({k}_\text{Eff}\) :

Effective thermal conductivity

k :

Thermal conductivity W /m2/K

\({k}_{o}\) :

Partition coefficient

L:

Latent heat of fusion J/Kg

\({L}_{t}\) :

Turbulence length scale

\({m}_{l}\) :

Liquidus slope

P :

Pressure in (pascal

\(\frac{q}{A}\) :

Heat flux

\({\mathrm{Re}}_{T}\) :

Turbulent Reynolds

r:

Radial distance

T :

Temperature, K

\({T}_{t}\) :

Turbulence time scale

t:

Time (seconds)

\(\overline{{v}^{2}}\) :

velocity variance (m2/s2)

\(\overline{v}\) :

Average y-velocity (m/s)

\(\overline{u}\) :

Average r-velocity (m/s)

V :

Velocity vector

\({v}^{^{\prime}}\) :

Fluctuating velocity in the j-direction

x :

Directional vector

x, y:

Cartesian coordinates

\({\alpha }_{t}\) :

Eddy thermal diffusivity

\({\beta }_{T}\) :

Thermal expansion coefficient

\({\beta }_{C}\) :

Solutal expansion coefficient

\(\varepsilon \) :

Turbulence dissipation rate (m2/s3)

ω:

Number to avoid zero division (0.001

\(\mu \) :

Relative viscosity

\({\mu }_{d}\) :

Dynamic laminar viscosity

\({\mu }_{t}\) :

Turbulent viscosity

ρ:

Density Kg\({\mathrm{m}}^{3}\)

\({\sigma }_{C}\) :

The turbulent Schmidt number

\({\sigma }_{t}\) :

Turbulent Prandtl number

\({\tau }\) :

Reynolds stresses

c:

Contact

cr :

Critical

gap:

Air gap in the mold

i :

Index in i-direction

j :

Index in j-direction

l :

Liquid

m :

Melting

r :

Relative

ref:

Reference

s :

Solid

sat:

Saturation

t :

Turbulent

w :

Water

α :

Free stream

References

  1. G.C. Nzebuka, M.A. Waheed, DDF 389, 183–194 (2018)

    Article  Google Scholar 

  2. R.S. Rerko, H.C.D. Groh, C. Beckermann, Mater. Sci. Eng. A 347, 186–197 (2003)

    Article  Google Scholar 

  3. D.G. Eskin, J. Zuidema, V.I. Savran, L. Katgerman, Mater. Sci. Eng. A 384, 232–244 (2004)

    Article  Google Scholar 

  4. M. Zaloznik, B. Sarler, D. Gobin, Mater. Technol. 38, 249–255 (2004)

    Google Scholar 

  5. E.D. Suyitno, D.G. Eskin, V.I. Savran, L. Katgerman, Metall. Mater. Trans. A 35A, 3551–3561 (2004)

    Article  ADS  Google Scholar 

  6. J. Sengupta, S.L. Cockcroft, D.M. Maijer, M.A. Wellsand, A. Larouche, Metall. Mater. Trans. B 35B, 523–540 (2004)

    Article  Google Scholar 

  7. Q. Du, D.G. Eskin, L. Katgerman, Mater. Sci. Eng. A 413–414, 144–150 (2005)

    Article  Google Scholar 

  8. A. Jafari, S.H. Seyedein, M.R. Aboutalebi, D.G. Eskin, L. Katgerman, Iran. J. Mater. Sci. Eng. 7, 39–50 (2010)

    Google Scholar 

  9. C.J. Vreeman, M.J.M. Krane, F.P. Incropera, Int. J. Heat Mass Transf. 43, 677–686 (2000)

    Article  Google Scholar 

  10. J.F. Grandfield, P.T. McGlade, Mater. Forum 20, 29–51 (1996)

    Google Scholar 

  11. A. Pakanati, M. M’Hamdi, H. Combeau, M. Založnik, Metall. Mater. Trans. A 49(10), 4710–4721 (2018)

    Article  Google Scholar 

  12. S. Verma, A. Dewan, Metall. Mater. Trans. B 45B, 1456–1471 (2014)

    Article  ADS  Google Scholar 

  13. L. Zhang, D.G. Eskin, A. Miroux, T. Subroto, L. Katgerman, IOP Conf. Series Mater. Sci. Eng. 33, 1–7 (2012)

    Google Scholar 

  14. L. Begum, M. Hasan, Numer. Heat Transf. Part A 67, 719–745 (2015)

    Article  ADS  Google Scholar 

  15. G.C. Nzebuka, M.A. Waheed, S.I. Kuye, B.I. Olajuwon, Metall. Mater. Trans. B 50(2), 866–880 (2019)

    Article  Google Scholar 

  16. C.M. Oldenburg, F.J. Spera, Numer. Heat Transf. Part B 21, 217–229 (1992)

    Article  ADS  Google Scholar 

  17. G.C. Nzebuka, M.A. Waheed, Int. J. Therm. Sci. 147, 106152 (2020)

    Article  Google Scholar 

  18. G. Poole, N. El-Kaddah, ISIJ Int. 54, 321–327 (2014)

    Article  Google Scholar 

  19. W.D. Bennon, F.P. Incropera, Int. J. Heat Mass Transf. 30, 2161–2170 (1987)

    Article  Google Scholar 

  20. S. Chang, D.M. Stefanescu, Metall. Trans. A 27A, 2708–2721 (1996)

    Article  Google Scholar 

  21. V.R. Voller, C. Prakash, Int. J. Heat Mass Transf. 30, 1709–1719 (1987)

    Article  Google Scholar 

  22. M. Rappaz, V. Voller, Metall. and Mater. Trans. A 21A, 749–753 (1990)

    Article  ADS  Google Scholar 

  23. V.R. Voller, C.R. Swaminathan, Numer. Heat Transf. Part B 19, 175–189 (1991)

    Article  ADS  Google Scholar 

  24. F.S. Lien, G. Kalitzin, Int. J. Heat Fluid Flow 22, 53–61 (2001)

    Article  Google Scholar 

  25. D.R. Laurence, J.C. Uribe, S.V. Utyuzhnikov, Flow Turbul. Combust. 73, 169–185 (2004)

    Article  Google Scholar 

  26. B.R. Kazerooni, S.K. Hanani, Trans. B Trans. B Mech. Eng. 16, 159–167 (2009)

    Google Scholar 

  27. W.H. Suyitno, L. Kool, Metall. Mater. Trans. A 35A, 2917–2926 (2004)

    Article  ADS  Google Scholar 

  28. ANSYS FLUENT 16.0, ANSYS, Inc., Canonsburg, PA (2011)

  29. D.G. Eskin, V.I. Savran, L. Katgerman, Metall. Mater. Trans. A 36A, 1965–1976 (2005)

    Article  ADS  Google Scholar 

  30. S. Chakraborty, N. Chakraborty, P. Kumar, P. Dutta, Int. J. Heat Mass Transf. 46, 1115–1137 (2003)

    Article  Google Scholar 

  31. A.V. Reddy, C. Beckermann, Metall. Mater. Trans. B 28, 479–489 (1997)

    Article  Google Scholar 

  32. D. Eskin, Mechanisms of macro-segregation in direct-chill casting of aluminum alloys. Proceedings of the 12th international conference of aluminium alloys, 2010, pp. 185–192

  33. V. Hatiĉ, B. Mavrič, B. Šarler, Eng. Anal. Bound. Elements 113, 191–203 (2020)

    Article  MathSciNet  Google Scholar 

  34. Q. Du, D.G. Eskin, L. Katgerman, Metall Mater. Trans. B. 38A, 180–189 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is accomplished by the support of the Tertiary Education Trust Fund (TETFUND) (www.tetfund.gov.ng).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Nzebuka.

Ethics declarations

Conflict of interest

There is no conflict of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, M.A., Nzebuka, G.C. Investigation of macrosegregation for different dendritic arm spacing, casting temperature, and thermal boundary conditions in a direct-chill casting. Appl. Phys. A 126, 725 (2020). https://doi.org/10.1007/s00339-020-03920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03920-9

Keywords

Navigation