Skip to main content
Log in

Effect of Cu addition and heat treatment on the microstructure and microwear of selective laser melted Mg–Al–Zn alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the microstructure, intermetallic phase, microhardness and wear resistance of unheated and heat-treated Mg-6Al-1Zn-xCu (x = 0, 0.5, 1, 2, and 4) alloys were investigated. The selective laser melted Mg-6Al-1Zn alloy that contained Cu had a typical continuous network structure that consisted of fine α-Mg grains and a eutectic phase. Uniformly distributed Mg2Cu was the main strengthening phase before heat treatment, and the analysis showed that the Mg2Cu was mainly present in the form of particles in the alloy. Most of the eutectic dissolved into the α-Mg matrix, and a granular Al2Cu phase was formed in the matrix after solution treatment. Al2Cu played a significant role in improving the high-temperature properties and wear resistance of the alloy. During the aging treatment, a helical phase (H phase) was formed that was rich in Cu and Al. Compared with those for the other Cu contents, the Mg-6Al-1Zn-2Cu alloy had the best wear resistance and antifriction properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. S.Q. Chen, X.P. Dong, R. Ma, L. Zhang, H. Wang, Z.T. Fan, Mater. Sci. Eng. A 551, 87 (2012)

    Article  Google Scholar 

  2. N.C. Verissimo, C. Brito, C.R. Afonso, J.E. Spinelli, N. Cheung, A. Garcia, Mater. Chem. Phys. 204, 105 (2018)

    Article  Google Scholar 

  3. N. Safari, M.R. Toroghinejad, M. Kharaziha, Mater. Chem. Phys. 237, 121838 (2019)

    Article  Google Scholar 

  4. S. Hidetoshi, K. Akihito, K. Akira, Mater. Sci. Eng. A 732, 21 (2018)

    Article  Google Scholar 

  5. Y. Motohiro, M. Naoki, H. Makoto, M. Mamoru, C. Yasumasa, Acta Mater. 83, 294 (2015)

    Article  Google Scholar 

  6. D. Hu, Y. Wang, D.F. Zhang, L. Hao, J.J. Jiang, Z.H. Li, Y.T. Chen, Mater. Manuf. Process 30, 1298 (2015)

    Article  Google Scholar 

  7. C.C. Ng, M.M. Savalani, M.L. Lau, H.C. Man, Appl. Surf. Sci. 257, 7447 (2011)

    Article  ADS  Google Scholar 

  8. X.M. Niu, H.Y. Shen, J.Z. Fu, Mater. Lett. 221, 4 (2018)

    Article  Google Scholar 

  9. B.C. Zhang, H.L. Liao, C. Coddet, Mater. Des. 34, 753 (2012)

    Article  Google Scholar 

  10. K.W. Wei, X.Y. Zeng, Z.M. Wang, J.F. Deng, M.N. Liu, G. Huang, X.C. Yuan, Mater. Sci. Eng. A 756, 226 (2019)

    Article  Google Scholar 

  11. C. Liu, M. Zhang, C.J. Chen, Mater. Sci. Eng. A 703, 359 (2017)

    Article  Google Scholar 

  12. S. Liu, W.S. Yang, X. Shi, B. Li, S.C. Duan, H.J. Guo, J. Guo, J. Alloy. Compd. 808, 151160 (2019)

    Article  Google Scholar 

  13. C.X. He, S.Z. Bin, P. Wu, C.D. Gao, P. Feng, Y.W. Yang, L. Liu, Y.Z. Zhou, M.C. Zhao, S. Yang, C.J. Shuai, Metals 7, 105 (2017)

    Article  Google Scholar 

  14. K.W. Wei, M. Gao, Z.M. Wang, X.Y. Zeng, Mater. Sci. Eng. A 611, 212 (2014)

    Article  Google Scholar 

  15. C.J. Shuai, B. Wang, S.Z. Bin, S.P. Peng, C.D. Gao, ACS Appl. Mater. Inter., 23464 (2020)

  16. Q.C. Deng, Y.J. Wu, Y.H. Luo, N. Su, X.Y. Xue, Z.Y. Chang, Q.Y. Wu, Y.T. Xue, L.M. Peng, Mater. Charact. 165, 110377 (2020)

    Article  Google Scholar 

  17. Y.W. Yang, C.F. Lu, S.P. Peng, L.D. Shen, D. Wang, F.W. Qi, C.J. Shuai, Virtual Phys. Prototy. 15, 278 (2020)

    Article  Google Scholar 

  18. Y.W. Yang, C.X. He, E. Dianyu, W.J. Yang, F.W. Qi, D.Q. Xie, L.D. Shen, S.P. Peng, C.J. Shuai, Mater Des. 185, 108259 (2020)

    Article  Google Scholar 

  19. D.F. Zhang, Z.H. Duan, H.J. Zhang, F.G. Qi, J. Chongqing Univ. 36, 79 (2013)

    Google Scholar 

  20. H.C. Pan, H. Fu, Y.P. Ren, Mater. Sci. Technol. 32, 1240 (2016)

    Article  Google Scholar 

  21. Z.Y. You, Investigations on the influence of alloying elements on the microstructures and mechanical properties of high zinc magnesium alloys, Dissertation, Taiyuan University of Technology, 2012

  22. X.C. Wang, C.J. Chen, M. Zhang, Rapid Prototyp. J. 26, 841 (2020)

    Article  Google Scholar 

  23. H. Men, Z. Fan, Acta Mater. 59, 2704 (2011)

    Article  Google Scholar 

  24. X.H. Hou, The mechanical research of solid state phase transformation and its effects on properties in Al–Cu–Mg alloy, Dissertation, Guangxi University, 2006

  25. J. Kacher, C. Landon, B.L. Adams, D. Fullwood, Ultramicroscopy 109, 1148 (2009)

    Article  Google Scholar 

  26. V. Raghavan, J. Phase Equilib. Diffus. 28, 174 (2007)

    Article  Google Scholar 

  27. W. Tang, E.H. Han, Y.B. Xu, L. Liu, Acta Metall. Sin. 41, 1199 (2005)

    Google Scholar 

  28. T. Uesugi, K. Higashi, Comput. Mater. Sci. 67, 1 (2013)

    Article  Google Scholar 

  29. D. Duly, J.P. Simon, Y. Brechet, Acta Metall. Mater. 43, 101 (1995)

    Google Scholar 

  30. Y.L. Xu, F. Gensch, Z. Ren, K.U. Kainer, N. Hort, Prog. Nat. Sci. 28, 724 (2018)

    Article  Google Scholar 

  31. S. Zhou, Y.P. Sun, W.X. Wang, J.M. He, Heat Treat. Met. 44, 78 (2019)

    Google Scholar 

  32. A. Kumar, G.K. Meenashisundaram, V. Manakari, G. Parande, M. Gupta, J. Alloy. Compd. 695, 3612 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology [Grant Number SKLAB02014006]; the Suzhou Science and Technology Bureau [Grant Number SYG201642]; the open fund for Jiangsu Key Laboratory of Advanced Manufacturing Technology [Grant Number HGAMTL-1701]; and the Jiangsu province 333 talent project [Grant Number BRA2017098].

Author information

Authors and Affiliations

Authors

Contributions

XW: Experiment design, development and paper writing. CC: Theoretical suggestions, language modification. MZ: Experiment idea and suggestions, language modification.

Corresponding author

Correspondence to Changjun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, C. & Zhang, M. Effect of Cu addition and heat treatment on the microstructure and microwear of selective laser melted Mg–Al–Zn alloy. Appl. Phys. A 126, 714 (2020). https://doi.org/10.1007/s00339-020-03917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03917-4

Keywords

Navigation