Skip to main content
Log in

Photoelectrical properties of anatase TiO2 with different morphologies under Au plasmonic effect

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of Au plasmonic on the photoelectrical properties of TiO2 nanostructure with different morphologies, i.e. nanosphericals, nanowalls, and nanorods, has been investigated. We found that the morphology strongly influences the nature of photoelectrical property modification by the Au plasmonic effect. TiO2 nanowalls with large-area (001) facet, i.e. the second highest energy facet in anatase phase, undergo the highest in the properties changes that were followed by the nanorods and nanosphericals. However, owing to the performance of DSSC device depends on the nature of photoanode attachment on the FTO substrate, the highest photovoltaic performance was given by the TiO2 nanorods, which is the strongest attachment onto the substrate surface. The present results can provide a straightforward approach for realizing high-performance DSSC device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.B. Ross, C.A. Mirkin, G.C. Schatz, J. Phys. Chem. C 120, 816 (2016)

    Google Scholar 

  2. S. Klubnuan, S. Suwanboon, P. Amornpitoksuk, Opt. Mater. 53, 134 (2016)

    ADS  Google Scholar 

  3. A. Mortezaali, O. Taheri, Z. Hosseini, Microelectron. Eng. 151, 19 (2016)

    Google Scholar 

  4. M. Sharma, S. Kumar, O. Pandey, Dig. J. Nanomater. Biostruct. 3, 189 (2008)

    Google Scholar 

  5. A.A. Umar, S.K.M. Saad, M.I.A. Umar, M.Y.A. Rahman, M. Oyama, Opt. Mater. 75, 390 (2018)

    ADS  Google Scholar 

  6. I.V. Kityk, A. Ali Umar, M. Oyama, Phys. E Low Dimens. Syst. Nanostruct. 28, 178 (2005)

    ADS  Google Scholar 

  7. I. Iwantono, F. Anggelina, M. Saad, S. Khatijah, M.Y.A. Rahman, A.A. Umar, Mater. Express 7, 312 (2017)

    Google Scholar 

  8. S.T. Tan, N.S. Alzayed, G. Lakshminarayana et al., Phys. E 61, 23 (2014)

    Google Scholar 

  9. J. Zhao, B. Liu, L. Meng et al., Appl. Catal. B 256, 117823 (2019)

    Google Scholar 

  10. P. Yin, M. Hegde, N.S. Garnet, Y. Tan, P.V. Radovanovic, Nano Lett. 19, 6695 (2019)

    ADS  Google Scholar 

  11. L. Sang, S. Zhang, J. Zhang, Z. Yu, G. Bai, C. Du, Mater. Chem. Phys. 231, 27 (2019)

    Google Scholar 

  12. R. Kavitha, S. Girish Kumar, C.G. Sushma, Photocatal. Funct. Mater. Environ. Remediat. 1, 191 (2019)

    Google Scholar 

  13. R. Asapu, N. Claes, R.-G. Ciocarlan et al., ACS Appl. Nano Mater. 2, 4067–4074 (2019)

    Google Scholar 

  14. Y.-H. Chiu, K.-D. Chang, Y.-J. Hsu, J. Mater. Chem. A 6, 4286 (2018)

    Google Scholar 

  15. H. Elbohy, M.R. Kim, A. Dubey et al., J. Mater. Chem. A 4, 545 (2016)

    Google Scholar 

  16. M. Pirhashemi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 491, 216 (2017)

    ADS  Google Scholar 

  17. S.K.M. Saad, A.A. Umar, H.Q. Nguyen, C.F. Dee, M.M. Salleh, M. Oyama, RSC Adv. 4, 57054 (2014)

    Google Scholar 

  18. M. Nurdin, O.A. Prabowo, Z. Arham et al., Surf. Interfaces 16, 108 (2019)

    Google Scholar 

  19. M. Nurdin, M. Maulidiyah, M.Z. Muzakkar, A.A. Umar, Microchem. J. 145, 756 (2019)

    Google Scholar 

  20. M. Nurdin, L. Agusu, A.A.M. Putra et al., J. Phys. Chem. Solids 131, 104 (2019)

    ADS  Google Scholar 

  21. D. Dahlan, M.A. Ramli, K. Fiqrian, S.K.M. Saad, M. Oyama, A.A. Umar, J. Phys. Chem. Solids 127, 213 (2019)

    ADS  Google Scholar 

  22. S. Nafisah, A. Oktaviandi, A.A. Umar, M.M. Salleh, A. Balouch, S.K.M. Saad, J. Phys. Conf. Ser. 431, 012011 (2013)

    Google Scholar 

  23. D. Dahlan, S.K.M. Saad, A.U. Berli, A. Bajili, A.A. Umar, Phys. E 91, 185 (2017)

    Google Scholar 

  24. A.A. Umar, M.Y.A. Rahman, S.K.M. Saad, M.M. Salleh, M. Oyama, Appl. Surf. Sci. 270, 109 (2013). https://doi.org/10.1016/j.apsusc.2012.12.128

    Article  ADS  Google Scholar 

  25. A.A. Umar, M.Y.A. Rahman, S.K.M. Saad, M.M. Salleh, Int. J. Electrochem. Sci. 7, 7855 (2012)

    Google Scholar 

  26. S.K. Saad, A. Ali Umar, M.I. Ali Umar et al., ACS Omege 3, 2579 (2018)

    Google Scholar 

  27. M.Y. Rika, A. Rahman, M.M. Salleh, A.A. Umar, A. Ahmad, Phys. B Condens. Matter 404, 1420 (2009)

    ADS  Google Scholar 

  28. I. Iwantono, S.K.M. Saad, F. Anggelina, A. Awitdrus, M.A. Ramli, A.A. Umar, Phys. E 111, 44 (2019)

    Google Scholar 

  29. I.V. Kityk, J. Ebothé, I. Fuks-Janczarek et al., Nanotechnology 16, 1687 (2005)

    ADS  Google Scholar 

  30. A.A. Umar, I. Iwantono, A. Abdullah, M.M. Salleh, M. Oyama, Nanoscale Res. Lett. 7, 252 (2012)

    ADS  Google Scholar 

  31. I.V. Kityk, A.A. Umar, M. Oyama, Phys. E 27, 420 (2005)

    Google Scholar 

  32. A.A. Umar, M. Oyama, Cryst. Growth Des. 8, 1808 (2008)

    Google Scholar 

  33. A. Ali Umar, M. Oyama, M.M. Salleh, B.Y. Majlis, Crystal Growth Des. 10, 3694 (2010)

    Google Scholar 

  34. A.A. Umar, M. Oyama, Appl. Surf. Sci. 253, 2933 (2006)

    ADS  Google Scholar 

  35. A.A. Shah, A.A. Umar, M.M. Salleh, Electrochim. Acta 195, 134 (2016)

    Google Scholar 

  36. Y. Zhong, A. Tada, S. Izawa, K. Hashimoto, K. Tajima, Adv. Energy Mater. 4, 1301332 (2014)

    Google Scholar 

  37. H. Jun, M. Careem, A.K. Arof, Mater. Today Proc. 3, S73 (2016)

    Google Scholar 

  38. S.P. Lim, A. Pandikumar, N.M. Huang, H.N. Lim, RSC Adv. 5, 44398 (2015)

    Google Scholar 

  39. S. Mayumi, Y. Ikeguchi, D. Nakane, Y. Ishikawa, Y. Uraoka, M. Ikeguchi, Nanoscale Res. Lett. 12, 513 (2017)

    ADS  Google Scholar 

  40. H.-Y. Yang, S.H. Lee, H.-M. Kim et al., J. Ind. Eng. Chem. 80, 311 (2019)

    Google Scholar 

  41. D.H. Song, H.-S. Kim, J.S. Suh, B.-H. Jun, W.-Y. Rho, Nanomaterials 7, 136 (2017)

    Google Scholar 

  42. M. Abd-Ellah, N. Moghimi, L. Zhang et al., Nanoscale 8, 1658 (2016)

    ADS  Google Scholar 

  43. T. Solaiyammal, P. Murugakoothan, Mater. Sci. Energy Technol. 2, 171 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from Universitas Andalas for supporting this project under PDUPT Grant no. 163/SP2H/LT/DRPM/2019 and the Ministry of Higher Education of Malaysia under FRGS/1/2019/STG02/UKM/02/03. The project is also partly supported by Universiti Kebangsaan Malaysia under MI-2019-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akrajas Ali Umar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nabilah Alias: on study leave from Fakulti Sains and Teknologi Industri, Universiti Malaysia Pahang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlan, D., Alias, N., Saad, S.K.M. et al. Photoelectrical properties of anatase TiO2 with different morphologies under Au plasmonic effect. Appl. Phys. A 126, 734 (2020). https://doi.org/10.1007/s00339-020-03910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03910-x

Keywords

Navigation