Skip to main content
Log in

Surface treatment of titanium by in-situ anodizination and NiO photodeposition: enhancement of photoelectrochemical properties for water splitting and photocathodic protection of stainless steel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Chromium-doped TiO2 nanotubes (CT) film on titanium substrates was prepared by an in-situ electrochemical anodizing method and then a wide range time was used for photodeposition of NiO on the surface of CT to optimize the condition for the fabrication of NiO-chromium-doped TiO2 nanotubes (NCT). Various techniques were used to characterization which confirms the anatase form of TiO2 as well as the presence of NiO. The UV–Vis spectra exhibit that deposited of NiO on the surface of CT progressively enhances visible light absorption. Photoelectrochemical performance of as-prepared samples was studied in the presence and absence of light which showed that NCT samples are markedly beneficial for reducing photo generated charges recombination. NCT2 sample effectively increased photocurrent density four times more than the bare CT sample and showed the maximum amount of H2 evolution during water splitting after 60 min. In addition, Tafel tests are performed to investigate the photocathodic protection of as-prepared samples for 403 stainless steel. It was observed that the photocathodic protection performance is achieved for NCT2 which prepared at a photodeposition time of 20 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Palmisano, S. Yurdakal, V. Augugliaro, V. Loddo, L. Palmisano, Photocatalytic selective oxidation of 4-methoxybenzyl alcohol to aldehyde in aqueous suspension of home-prepared titanium dioxide catalyst. Adv. Synth. Catal. 349, 964–970 (2007)

    Google Scholar 

  2. L. Cheng, S. Qiu, J. Chen, J. Shao, S. Cao, A practical pathway for the preparation of Fe2O3 decorated TiO2 photocatalyst with enhanced visible-light photoactivity. Mater. Chem. Phys. 190, 53–61 (2017)

    Google Scholar 

  3. T. Mohammadi, A. Zeini Isfahani, Photooxidation of Salicylic Acid with TiO2 and Metal Coated TiO2, Acta Chim. Slov. 55, 172–178 (2008).

  4. J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 136, 8839–8842 (2014)

    Google Scholar 

  5. J.-C. Chou, M.-H. Yang, J.-W. Liao, C.-Y. Lee, J.-Y. Gan, Photoexcitation of TiO2 photoanode in water splitting. Mater. Chem. Phys. 143, 1417–1422 (2014)

    Google Scholar 

  6. A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    ADS  Google Scholar 

  7. L. Han, K. Feng, Z. Chen, Self-supported cobalt nickel nitride nanowires electrode for overall electrochemical water splitting. Energy Technol 5, 1908–1911 (2017)

    Google Scholar 

  8. D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, Y. Huang, Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts. Energy Technology 3, 888–895 (2015)

    Google Scholar 

  9. K.-C. Sun, Y.-C. Chen, M.-Y. Kuo, H.-W. Wang, Y.-F. Lu, J.-C. Chung, Y.-C. Liu, Y.-Z. Zeng, Synthesis and characterization of highly ordered TiO2 nanotube arrays for hydrogen generation via water splitting. Mater. Chem. Phys. 129, 35–39 (2011)

    Google Scholar 

  10. J. Zhang, L. Li, Z. Xiao, D. Liu, S. Wang, J. Zhang, Y. Hao, W. Zhang, Hollow sphere TiO2–ZrO2 prepared by self-assembly with polystyrene colloidal template for both photocatalytic degradation and H2 evolution from water splitting. ACS Sustain Chem Eng 4, 2037–2046 (2016)

    Google Scholar 

  11. B. Modak, S.K. Ghosh, An efficient strategy for controlled band gap engineering of KTaO3. J Phys Chem C 120, 6920–6929 (2016)

    Google Scholar 

  12. T.W. Kim, K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014)

    ADS  Google Scholar 

  13. D.H. van Dorp, N. Hijnen, M. Di Vece, J.J. Kelly, SiC: a photocathode for water splitting and hydrogen storage. Angew. Chem. 121, 6201–6204 (2009)

    Google Scholar 

  14. S. Riyajuddin, S. Tarik Aziz, S. Kumar, G.D. Nessim, K. Ghosh, 3D‐graphene decorated with g-C3N4/Cu3P composite: a noble metal‐free bifunctional electrocatalyst for overall water splitting, ChemCatChem 12, 1394–1402 (2020)

  15. J. Tian, Q. Liu, A.M. Asiri, K.A. Alamry, X. Sun, Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Chemsuschem 7, 2125–2130 (2014)

    Google Scholar 

  16. D. Chen, Z. Liu, Z. Guo, W. Yan, M. Ruan, Decorating Cu2O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. Chem. Eng. J. 381, 122655 (2020)

    Google Scholar 

  17. S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy Environ. Sci. 8, 731–759 (2015)

    Google Scholar 

  18. S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal 6, 8069–8097 (2016)

    Google Scholar 

  19. H. Ahmad, S. Kamarudin, L. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015)

    Google Scholar 

  20. J. Cen, Q. Wu, M. Liu, A. Orlov, Developing new understanding of photoelectrochemical water splitting via in-situ techniques: a review on recent progress. Green Energy Environ 2, 100–111 (2017)

    Google Scholar 

  21. L.M. Peter, G. Dayal, L.H. Wong, F.F. Abdi, Understanding the role of nanostructuring in photoelectrode performance for light-driven water splitting. J Electroanal Chem 819, 447–458 (2018)

    Google Scholar 

  22. T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. Acs Catalysis 8, 2253–2276 (2018)

    Google Scholar 

  23. S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115, 13211–13241 (2011)

    Google Scholar 

  24. A. Gołąbiewska, A. Malankowska, M. Jarek, W. Lisowski, G. Nowaczyk, S. Jurga, A. Zaleska-Medynska, The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2. Appl. Catal. B 196, 27–40 (2016)

    Google Scholar 

  25. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2807–2824 (2006)

    Google Scholar 

  26. C.T. Teodorescu-Soare, C. Catrinescu, M. Dobromir, G. Stoian, A. Arvinte, D. Luca, Growth and characterization of TiO2 nanotube arrays under dynamic anodization. Photocatalytic activity. J. Electroanal. Chem. 823, 388–396 (2018)

    Google Scholar 

  27. M. Alsawat, T. Altalhi, J.G. Shapter, D. Losic, Influence of dimensions, inter-distance and crystallinity of Titania nanotubes (TNTs) on their photocatalytic activity. Catal. Sci. Technol. 4, 2091–2098 (2014)

    Google Scholar 

  28. W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Func. Mater. 23, 1612–1619 (2013)

    Google Scholar 

  29. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326–8339 (2013)

    ADS  Google Scholar 

  30. M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl. Catal. B 23, 89–114 (1999)

    ADS  Google Scholar 

  31. J. Yu, Y. Hai, B. Cheng, Enhanced photocatalytic H2-production activity of TiO2 by Ni (OH) 2 cluster modification. J Phys Chem C 115, 4953–4958 (2011)

    Google Scholar 

  32. P. Du, R. Eisenberg, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021 (2012)

    Google Scholar 

  33. H. Wang, Q. Gong, H. Huang, T. Gao, Z. Yuan, G. Zhou, P-n heterostructured TiO2/NiO double-shelled hollow spheres for the photocatalytic degradation of papermaking wastewater. Mater. Res. Bull. 107, 397–406 (2018)

    Google Scholar 

  34. M. Ifires, T. Hadjersi, R. Chegroune, S. Lamrani, F. Moulai, M. Mebarki, A. Manseri, One-step electrodeposition of superhydrophobic NiO-Co(OH)2 urchin-like structures on Si nanowires as photocatalyst for RhB degradation under visible light. J. Alloy. Compd. 774, 908–917 (2019)

    Google Scholar 

  35. J. Ahmad, K. Majid, M.A. Dar, Controlled synthesis of p-type NiO/n-type GO nanocomposite with enhanced photocatalytic activity and study of temperature effect on the photocatalytic activity of the nanocomposite. Appl. Surf. Sci. 457, 417–426 (2018)

    ADS  Google Scholar 

  36. G. Li, L. Wei, Y. Yang, Novel NiO-modified Cu2O photocathode for photoelectrochemical water splitting. Appl. Phys. A Mater Sci. Process (2020). https://doi.org/10.1007/s00339-020-03491-9

    Article  Google Scholar 

  37. J. Li, H. Cui, X. Song, N. Wei, J. Tian, The high surface energy of NiO 110 facets incorporated into TiO2 hollow microspheres by etching Ti plate for enhanced photocatalytic and photoelectrochemical activity. Appl. Surf. Sci. 396, 1539–1545 (2017)

    ADS  Google Scholar 

  38. L. Li, B. Cheng, Y. Wang, J. Yu, Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers. J. Colloid Interface Sci. 449, 115–121 (2015)

    ADS  Google Scholar 

  39. L.G. Devi, N. Kottam, S.G. Kumar, K.E. Rajashekhar, Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light. Open Chem 8, 142–148 (2010)

    Google Scholar 

  40. W.-T. Chen, A. Chan, D. Sun-Waterhouse, J. Llorca, H. Idriss, G.I. Waterhouse, Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol–water mixtures. J. Catal. 367, 27–42 (2018)

    Google Scholar 

  41. M. Sun, Z. Chen, J. Yu, Highly efficient visible light induced photoelectrochemical anticorrosion for 304 SS by Ni-doped TiO2. Electrochim. Acta 109, 13–19 (2013)

    Google Scholar 

  42. C. Han, Q. Shao, J. Lei, Y. Zhu, S. Ge, Preparation of NiO/TiO2 pn heterojunction composites and its photocathodic protection properties for 304 stainless steel under simulated solar light. J. Alloy. Compd. 703, 530–537 (2017)

    Google Scholar 

  43. P. Baghery, M. Farzam, A. Mousavi, M. Hosseini, Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear. Surf. Coat. Technol. 204, 3804–3810 (2010)

    Google Scholar 

  44. Y.-F. Zhu, R.-G. Du, W. Chen, H.-Q. Qi, C.-J. Lin, Photocathodic protection properties of three-dimensional titanate nanowire network films prepared by a combined sol–gel and hydrothermal method. Electrochem. Commun. 12, 1626–1629 (2010)

    Google Scholar 

  45. J. Hu, Z.-C. Guan, Y. Liang, J.-Z. Zhou, Q. Liu, H.-P. Wang, H. Zhang, R.-G. Du, Bi2S3 modified single crystalline rutile TiO2 nanorod array films for photoelectrochemical cathodic protection. Corros. Sci. 125, 59–67 (2017)

    Google Scholar 

  46. M.M. Momeni, Y. Ghayeb, Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J. Alloy. Compd. 637, 393–400 (2015)

    Google Scholar 

  47. M.M. Momeni, Y. Ghayeb, M. Davarzadeh, Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. J. Electroanal. Chem. 739, 149–155 (2015)

    Google Scholar 

  48. T. Sharifi, Y. Ghayeb, T. Mohammadi, M.M. Momeni, Enhanced photoelectrochemical water splitting of CrTiO2 nanotube photoanodes by the decoration of their surface via the photodeposition of Ag and Au. Dalton Trans. 47, 11593–11604 (2018)

    Google Scholar 

  49. K. Sivaranjani, C.S. Gopinath, Porosity driven photocatalytic activity of wormhole mesoporous TiO2–xNx in direct sunlight. J. Mater. Chem. 21, 2639–2647 (2011)

    Google Scholar 

  50. R. Singh, H. Dong, Q. Zeng, L. Zhang, K. Rengasamy, Hexavalent chromium removal by chitosan modified-bioreduced nontronite. Geochim. Cosmochim. Acta 210, 25–41 (2017)

    ADS  Google Scholar 

  51. W.S. Zhang, E. Brück, Z.D. Zhang, O. Tegus, W.F. Li, P.Z. Si, D.Y. Geng, K.H.J. Buschow, Structure and magnetic properties of Cr nanoparticles and Cr2O3 nanoparticles. Phys. B 358, 332–338 (2005)

    ADS  Google Scholar 

  52. J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)

    Google Scholar 

Download references

Acknowledgements

The financial support of the Research Council of the Isfahan University of Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Ghayeb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, T., Ghayeb, Y., Mohammadi, T. et al. Surface treatment of titanium by in-situ anodizination and NiO photodeposition: enhancement of photoelectrochemical properties for water splitting and photocathodic protection of stainless steel. Appl. Phys. A 127, 72 (2021). https://doi.org/10.1007/s00339-020-03901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03901-y

Keywords

Navigation