Skip to main content
Log in

Improving Dy, Ce, Bi:YIG phase formation and magnetic features via heat treatment and chemical composition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper focuses on the effect of Dy-substitution on the magnetic and structural behavior of Ce, Bi:YIG. In the current work, Fe2O3, Y2O3, CeO2 and Dy2O3 fine powders were mixed at a stoichiometric portion and annealed at various temperatures from 1000 to 1420 °C in the air condition for different cycle times from 27 to 33 h. The phase identification, morphological study and magnetic performance were investigated using the Raman Spectroscopy (RS) and Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction analysis (XRD), Scanning Electron Microscope (SEM) and Vibrating Sample Magnetometer (VSM), respectively. The X-ray diffraction pattern of Y2.55−xDyxCe0.25Bi0.20Fe5O12 (x = 0.2, 0.4, 0.6) (Sample A) confirms the impurity phase CeO2. This category indicates that only a partial substitution of the Ce element is incorporated into the structure. For this reason, the ratio of the oxides and the heat treatment cycle were changed. The results revealed that the amount of CeO2 phase decreases for the Sample B (Y2.7−xDyxCe0.15Bi0.15Fe5O12, x = 0.2, 0.4, 0.6, 0.8). To investigate the probability of a lower formation of the impurity phase (CeO2), the Sample C (Y2.8−xDyxCe0.10Bi0.10Fe5O12, x = 0.2, 0.4, 0.6) with the lower amounts of Bi and Ce cations was considered. The data revealed that the amount of impurity phase slightly decreases as a result of the large ionic radii of Bi, Ce and Dy. The magnetic coercivity (Hc) was reduced from 25.06 for Sample B to 17.78 Oe for Sample C due to a reduction in the Bi and Ce elements and CeO2 impurity phase as well. The saturation magnetization ascended from 31.47 for pure YIG to 35.15 emu/g for Sample B and to 33.76 emu/g for Sample C with the same value of the Dy content (xDy = 0.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Bertaut, R. Pauthenet, Crystalline structure and magnetic properties of ferrites having the general formula 5Fe2O3 . 3M2O3. Proceedings of the IEE—Part B: Radio and Electronic Engineering,104(5), 261-264 (1957)

  2. S. Geller, M. Gilleo, The crystal structure and ferrimagnetism of yttrium-iron garnet, Y3Fe2(FeO4)3. J. Phys. Chem. Solids 3(1–2), 30–36 (1957)

    ADS  Google Scholar 

  3. M. Rashad, M. Hessien, A. El-Midany, I. Ibrahim, Effect of synthesis conditions on the preparation of YIG powders via co-precipitation method. J. Magn. Magn. Mater. 321(22), 3752–3757 (2009)

    ADS  Google Scholar 

  4. E. Garskaite et al., On the synthesis and characterization of iron-containing garnets (Y3Fe5O12, YIG and Fe3Al5O12, IAG). Chem. Phys. 323(2–3), 204–210 (2006)

    Google Scholar 

  5. K. Modi, S. Dolia, P. Sharma, Effect of mechanical milling induced strain and particle size reduction on some physical properties of polycrystalline yttrium iron garnet. Indian J. Phys. 89(5), 425–436 (2015)

    ADS  Google Scholar 

  6. M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2000)

    ADS  Google Scholar 

  7. H. Xu, H. Yang, L. Lu, Effect of erbium oxide on synthesis and magnetic properties of yttrium-iron garnet nanoparticles in organic medium. J. Mater. Sci. Mater. Electron. 19(6), 509–513 (2008)

    Google Scholar 

  8. H. Zhao, J. Zhou, Y. Bai, Z. Gui, L. Li, Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium iron garnet. J. Magn. Magn. Mater. 280(2–3), 208–213 (2004)

    ADS  Google Scholar 

  9. J.S. Kum, S.J. Kim, I.-B. Shim, C.S. Kim, Magnetic properties of Ce-substituted yttrium iron garnet ferrite powders fabricated using a sol–gel method. J. Magn. Magn. Mater. 272, 2227–2229 (2004)

    ADS  Google Scholar 

  10. M. Jafelicci Jr., R. Godoi, Preparation and characterization of spherical yttrium iron garnet via coprecipitation. J. Magn. Magn. Mater. 226, 1421–1423 (2001)

    ADS  Google Scholar 

  11. Z.A. Motlagh, M. Mozaffari, J. Amighian, Preparation of nano-sized Al-substituted yttrium iron garnets by the mechanochemical method and investigation of their magnetic properties. J. Magn. Magn. Mater. 321(13), 1980–1984 (2009)

    ADS  Google Scholar 

  12. W.F.F.W. Ali, M. Othman, M.F. Ain, N.S. Abdullah, Z.A. Ahmad, Studies on the formation of yttrium iron garnet (YIG) through stoichiometry modification prepared by conventional solid-state method. J. Eur. Ceram. Soc. 33(7), 1317–1324 (2013)

    Google Scholar 

  13. M. Alex, K. Shono, S. Kuroda, N. Koshino, S. Ogawa, Ce-substituted garnet media for magneto-optic recording. J. Appl. Phys. 67(9), 4432–4434 (1990)

    ADS  Google Scholar 

  14. N. Adachi, V. Denysenkov, S. Khartsev, A.M. Grishin, T. Okuda, Epitaxial Bi3Fe5O12 (001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques. J. Appl. Phys. 88(5), 2734–2739 (2000)

    ADS  Google Scholar 

  15. B. Bechevet, D. Challeton, B. Rolland, M. Armand, B. Valon, J. Mouchot, Rapid thermal annealing of CeDyGaIG films for magneto-optical disk storage. J. Appl. Phys. 69(8), 4767–4769 (1991)

    ADS  Google Scholar 

  16. M.C. Sekhar, M.R. Singh, S. Basu, S. Pinnepalli, Giant faraday rotation in BixCe3-xFe5O12 epitaxial garnet films. Opt. Express 20(9), 9624–9639 (2012)

    ADS  Google Scholar 

  17. S. Higuchi, S. Takekawa, K. Kitamura, Magneto-optical properties of cerium-substituted yttrium iron garnet single crystals grown by traveling solvent floating zone method. Jpn. J. Appl. Phys. 38(7R), 4122–4126 (1999)

    ADS  Google Scholar 

  18. R. Gieniusz, J. Desvignes, R. Jabłoński, Microwave excitations in Bi-doped garnet films. J. Magn. Magn. Mater. 153(1–2), 50–54 (1996)

    ADS  Google Scholar 

  19. M. Gomi, K. Satoh, M. Abe, Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering. Jpn. J. Appl. Phys. 27(8A), L1536–L1538 (1988)

    ADS  Google Scholar 

  20. M. Chandra Sekhar, M.R. Singh, Fabrication and characterization of bismuth-cerium composite iron garnet epitaxial films for magneto optical applications. J. Appl. Phys. 112(8), 083525-1-13 (2012)

    ADS  Google Scholar 

  21. T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, C. Ross, Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits. J. Appl. Phys. 113(17), 17A939-1-3 (2013)

    Google Scholar 

  22. A.M. Grishin, S.I. Khartsev, Green and blue magneto-optical photonic crystals. Thin Solid Films 520(9), 3647–3650 (2012)

    ADS  Google Scholar 

  23. S. Higuchi et al., Fabrications of cerium-substituted YIG thin films for magnetic field sensor by pulsed-laser deposition. IEEE Trans. Magn. 37(4), 2451–2453 (2001)

    ADS  Google Scholar 

  24. T.-C. Mao, J.-C. Chen, Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic. J. Magn. Magn. Mater. 302(1), 74–81 (2006)

    ADS  Google Scholar 

  25. G. Anandha Babu, G. Ravi, T. Mahalingam, M. Navaneethan, M. Arivanandhan, Y. Hayakawa, Size and surface effects of Ce-doped NiO and Co3O4 nanostructures on ferromagnetism behavior prepared by the microwave route. J. Phys. Chem. C 118(40), 23335–23348 (2014)

    Google Scholar 

  26. T. Sekijima, H. Itoh, T. Fujii, K. Wakino, M. Okada, Influence of growth atmosphere on solubility limit of Ce3+ ions in Ce-substituted fibrous yttrium iron garnet single crystals. J. Cryst. Growth 229(1–4), 409–414 (2001)

    ADS  Google Scholar 

  27. M. Huang, S.-Y. Zhang, Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications. Appl. Phys. A 74(2), 177–180 (2002)

    ADS  MathSciNet  Google Scholar 

  28. J. Rongjin, Y. Wenhui, F. Caixiang, Z. Yanwei, Glycothermal synthesis of heavily Ce-doped YIG nanocrystals and their microstructures and magnetic properties. J. Mater. Chem. C 1(9), 1763–1770 (2013)

    Google Scholar 

  29. W.R. Eppler, M.H. Kryder, Garnets for short wavelength magneto-optic recording. J. Phys. Chem. Solids 56(11), 1479–1490 (1995)

    ADS  Google Scholar 

  30. K. Shono, H. Kano, N. Koshino, S. Ogawa, Magneto-optical recording of sputtered garnet films using laser diode. IEEE Trans. Magn. 23(5), 2970–2972 (1987)

    ADS  Google Scholar 

  31. H. Van Noort, J. Martens, W. Peeters, The cation distribution of CoFe2−xAlxO4 as determined by conversion electron mössbauer spectroscopy. Mater. Res. Bull. 20(1), 41–47 (1985)

    Google Scholar 

  32. S.E. Shirsath et al., Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J. Phys. Chem. Solids 71(12), 1669–1675 (2010)

    ADS  Google Scholar 

  33. M.N. Akhtar, K. Ali, A. Umer, T. Ahmad, M.A. Khan, Structural elucidation, and morphological and magnetic behavior evaluations, of low-temperature sintered, Ce-doped, nanostructured garnet ferrites. Mater. Res. Bull. 101, 48–55 (2018)

    Google Scholar 

  34. E. Gamaliy, H. S̆těpánková, J. Kohout, A. Snezhko, M. Kučera, K. Nitsch, Effect of aluminium substitution in YIG on iron hyperfine field anisotropy. J. Magn. Magn. Mater. 242, 766–768 (2002)

    ADS  Google Scholar 

  35. U. Ghodake, N. Chaudhari, R. Kambale, J. Patil, S. Suryavanshi, Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg–Zn ferrites. J. Magn. Magn. Mater. 407, 60–68 (2016)

    ADS  Google Scholar 

  36. R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  37. M.A. Khan et al., Structural and magnetic behavior evaluation of Mg–Tb ferrite/polypyrrole nanocomposites. Ceram. Int. 41(1), 651–656 (2015)

    Google Scholar 

  38. A. Barkatt, Magnetic Ceramics By Raul Valenzuela (National University of Mexico). Cambridge University Press: Cambridge, U.K. 1994. xix + 312 pp. $79.95. ISBN 0–521–36485-X. J. Am. Chem. Soc. 118(4), 5–6 (1996)

  39. A. Shaula, V. Kharton, F. Marques, Mixed conductivity of garnet phases based on gadolinium ferrite. J. Eur. Ceram. Soc. 24(6), 1309–1312 (2004)

    Google Scholar 

  40. M.N. Akhtar et al., Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method. J. Magn. Magn. Mater. 401, 425–431 (2016)

    ADS  Google Scholar 

  41. A. Hofmeister, K. Campbell, Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets. J. Appl. Phys. 72(2), 638–646 (1992)

    ADS  Google Scholar 

  42. M.N. Akhtar et al., Structural, morphological, dielectric and magnetic characterizations of Ni0.6Cu0.2Zn0.2Fe2O4 (NCZF/MWCNTs/PVDF) nanocomposites for multilayer chip inductor (MLCI) applications. Ceram. Int. 40(10), 15821–15829 (2014)

    Google Scholar 

  43. Y. Chen, K. Wu, Y. Yao, C. Peng, K. You, W. Tse, The influence of Fe concentration on Y3Al5−xFexO12 garnets. Microelectron. Eng. 81(2–4), 329–335 (2005)

    Google Scholar 

  44. S. Naik, A. Salker, Enhancement in the magnetic moment with Cr3+ doping and its effect on the magneto-structural properties of Ce0.1Y2.9Fe5O12. Phys. Chem. Chem. Phys. 14(28), 10032–10040 (2012)

    Google Scholar 

  45. H. Lee et al., Magnetic and FTIR studies of BixY3−xFe5O12 (x= 0, 1, 2) powders prepared by the metal organic decomposition method. J. Alloy. Compd. 509(39), 9434–9440 (2011)

    Google Scholar 

  46. S. Geller, A. Colville, Increased Curie temperature and superexchange interaction geometry in bismuth and vanadium substituted YIG. In: AIP Conference Proceedings. 24(1), 372–373 (1975)

  47. S. Geller, Crystal chemistry of the garnets. Zeitschrift für Kristallographie—Cryst. Mater. 125(16), 1–47 (1967)

    ADS  Google Scholar 

  48. M. Niyaifar, M. Radhakrishna, A. Hassnpour, M. Mozaffari, J. Amighian, The correlation of lattice constant with superexchange interaction in Bi-YIG fabricated by mechanochemical processing. Hyperfine Interact. 184(1–3), 161–166 (2008)

    ADS  Google Scholar 

  49. S.E. Shirsath, B. Toksha, K. Jadhav, Structural and magnetic properties of In3+ substituted NiFe2O4. Mater. Chem. Phys. 117(1), 163–168 (2009)

    Google Scholar 

  50. W. Jiaqian, Y. Jian, J. Yulong, Q. Tai, Effect of manganese addition on the microstructure and electromagnetic properties of YIG. J. Rare Earths 29(6), 562–566 (2011)

    Google Scholar 

  51. Y.R. Uhm, J.C. Lim, S.M. Choi, C.S. Kim, Magnetic properties of R-YIG (R= La, Nd, and Gd) derived by a sol-gel method. J. Magn. 21(3), 303–307 (2016)

    Google Scholar 

  52. I. Yarici, M. Erol, E. Celik, Y. Ozturk, Effect of pH and annealing temperature on the structural and magnetic properties of cerium-substituted yttrium iron garnet powders produced by the sol-gel method. Mater. Sci. Pol. 34(2), 362–367 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shokrollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifeh, M.R., Shokrollahi, H., Shahriari Nogorani, F. et al. Improving Dy, Ce, Bi:YIG phase formation and magnetic features via heat treatment and chemical composition . Appl. Phys. A 126, 759 (2020). https://doi.org/10.1007/s00339-020-03899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03899-3

Keywords

Navigation