An experimental and DFT study on novel dyes incorporated with natural dyes on titanium dioxide (TiO2) towards solar cell application


Titanium dioxide (TiO2) thin films were deposited on fluorine tin oxide (FTO) coated glass substrate using spin-coating techniques and as-deposited films were sensitized with various dyes. A series of azo derivatives (2, 5a-b) having different structures were successfully prepared through the process of the azo coupling reaction. KAZO 6 was successfully synthesized by esterification of kojic acid obtained from sago waste with azo 5a. These azo dye were examined using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) to obtain the vertical excitation, electron distribution, energy levels, band gap, and light-harvesting efficiency in the ground and excited state. The obtained values exhibited a good correlation with the experimental values. Efficiency enhancement was reported by the incorporation of KAZO 6 with curcumin extracted from turmeric. Spectroscopy and optical properties of synthesized dyes were characterized using CHNS elemental analysis, FTIR, 1H NMR, 13C NMR, and UV–Vis spectroscopies. KAZO 6 displayed an efficiency of 1.59% compared to azo derivatives 0.13–1.12%. The efficiency of KAZO 6 enhanced from 1.59 to 1.74% with the incorporation of turmeric dye.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    U. Mehmood, S.U. Rahman, K. Harrabi, I.A. Hussein, B.V.S. Reddy, Recent advances in dye sensitized solar cells. Adv. Mater. Sci. Eng. 2014, 1–12 (2014)

    Google Scholar 

  2. 2.

    H. Hug, M. Bader, P. Mair, T. Glatzel, Biophotovoltaics: natural pigments in dye-sensitized solar cells. Appl. Energy 115, 216–225 (2014)

    Google Scholar 

  3. 3.

    R.A.M. Ali, N. Nayan, Fabrication and analysis of dye-sensitized solar cell using natural dye extracted from dragon fruit. Int. J. Integr. Eng. 2(3), 55–62 (2010)

    Google Scholar 

  4. 4.

    H. Zhou, L. Wu, Y. Gao, T. Ma, Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. A Chem. 219, 188–194 (2011)

    Google Scholar 

  5. 5.

    C.S. Chou, F.C. Chou, J.Y. Kang, Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells. Powder. Technol. 215, 38–45 (2012)

    Google Scholar 

  6. 6.

    T.S. Senthil, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, M. Thambidurai, R. Balasundaraprabhu, Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renew. Energy 36, 2484–2488 (2011)

    Google Scholar 

  7. 7.

    S. Kushwaha, L. Bahadur, Characterization of synthetic Ni (II)-xylenol complex as a photosensitizer for wide-band gap ZnO semiconductor electrodes. Int J Photoenergy 2011, 1–9 (2011)

    Google Scholar 

  8. 8.

    S.S. Kanmani, K. Ramachandran, Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications. Renew. Energy 3, 149–156 (2002)

    Google Scholar 

  9. 9.

    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Google Scholar 

  10. 10.

    R. Buscaino, C. Baiocchi, C. Barolo, C. Medana, M. Grätze, M.K. Nazeeruddin, G. Viscardi, A mass spectrometric analysis of sensitizer solution used for dye-sensitized solar cell. Inorg. Chim. Acta 361, 798–805 (2008)

    Google Scholar 

  11. 11.

    S.A. Taya, T.M. El-Agez, H.S. El-Ghamri, M.S. Abdel-Latif, Effects of different terminal substituents on the mesomorphic behavior of some azo-schiff base and azo-ester-based liquid crystals. Int. J. Mater. Sci. Appl. 2, 37–42 (2013)

    Google Scholar 

  12. 12.

    R. Hemmatzadeh, A. Mohammadi, Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells. J. Theor. Appl. Phys. 7, 1–7 (2013)

    Google Scholar 

  13. 13.

    L. Zhang, J.M. Cole, P.G. Waddell, K.S. Low, X. Liu, Relating electron donor and carboxylic acid anchoring substitution effect in azo dyes to dye sensitized solar cell performance. ACS Sustain. Chem. Eng. 1, 1440–1452 (2013)

    Google Scholar 

  14. 14.

    M.R. Karim, M.R.K. Sheikh, N.M. Salleh, R. Yahya, A. Hassan, M.A. Hoque, Synthesis and characterization of azobenzothiazolechromophore based liquid crystal macromers: effect of substituent on benzothiazole ring and terminal group on mesomorphic, thermal and optical properties. Mater. Chem. Phys. 140, 543–552 (2013)

    Google Scholar 

  15. 15.

    B.T. Thaker, J.B. Kanojiya, R.S. Tandel, Effects of different terminal substituents on the mesomorphic behavior of some azo-schiff base and azo-ester-based liquid crystals. Mol. Cryst. Liq. Cryst. 528, 120–137 (2010)

    Google Scholar 

  16. 16.

    S. Kushwaha, L. Bahadur, Characterization of synthetic Ni (II)-xylenol complex as a photosensitizer for wide-band gap ZnO semiconductor electrodes. J. Energy 2013, 1–8 (2013)

    Google Scholar 

  17. 17.

    N.W. Duffy, L.M. Peter, R.M.G. Rajapakse, K.G.U. Wijayantha, Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells. J. Phys. Chem. B. 104, 8916–8919 (2000)

    Google Scholar 

  18. 18.

    M.R. Narayan, Review: dye sensitized solar cells based on natural photosensitizers. Renew. Sust. Energ. Rev. 16, 208–215 (2012)

    Google Scholar 

  19. 19.

    R. Espinosa, I. Zumeta, J.L. Santana, F. Martı́nez-Luzardo, B. González, S. Docteur, E. Vigil, Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600 nm. Sol. Energ. Mat. Sol. Cells 85(3), 359–369 (2005)

    Google Scholar 

  20. 20.

    E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, O. Kurita, Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Sol. Energy 81(4), 512–516 (2007)

    ADS  Google Scholar 

  21. 21.

    H. Zhu, H. Zeng, V. Subramanian, C. Masarapu, K.H. Hung, B. Wei, Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology 19(46), 465204 (2008)

    ADS  Google Scholar 

  22. 22.

    D. Zhang, S.M. Lanier, J.A. Downing, J.L. Avent, J. Lum, J.L. McHale, Betalain pigments for dye-sensitized solar cells. J. Photochem. Photobiol. 195(1), 72–80 (2008)

    Google Scholar 

  23. 23.

    W.H. Lai, Y.H. Su, L.G. Teoh, M.H. Hon, Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J. Photochem. Photobiol. 195(2), 307–313 (2008)

    Google Scholar 

  24. 24.

    A.R. Hernández-Martínez, M. Estevez, S. Vargas, F. Quintanilla, R. Rodríguez, Natural pigment based dye-sensitized solar cells. JART 10(1), 38–47 (2012)

    Google Scholar 

  25. 25.

    S. Hao, J. Wu, Y. Huang, J. Lin, Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 80, 209–214 (2006)

    ADS  Google Scholar 

  26. 26.

    A.S. Polo, N.Y.M. Iha, Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol. Energ. Mat. Sol. Cells 90, 1936–1944 (2006)

    Google Scholar 

  27. 27.

    G.R.A. Kumara, S. Kaneko, M. Okuya, B. Onwona-Ageyeman, A. Konno, K. Tennakone, Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energ. Mat. Sol. Cells 90, 1220–1226 (2006)

    Google Scholar 

  28. 28.

    K. Wongcharee, V. Meeyoo, S. Chavadej, Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol. Energ. Mat. Sol. Cells 90, 566–571 (2007)

    Google Scholar 

  29. 29.

    A. Lajis, M. Basri, R. Mohamad, M. Hamid, S. Ashari, N. Ishak, A. Zookiflie, A. Ariff, Enzymatic synthesis of kojic acid esters and their potential industrial application. Chem. Pap. 67, 573–585 (2003)

    Google Scholar 

  30. 30.

    H.M. Hassan, A.M. Saad, M.M. Hazzaa, E.I. Ibrahim, Optimization study for the production of kojic acid crystals by Aspergillus oryzae var. effusus NRC 14 isolate. Int. J. Curr. Microbiol. App. Sci 3, 133–142 (2014)

    Google Scholar 

  31. 31.

    S. Nurashikin, E.Z. Rusley, A. Husaini, Solid-state bioconversion of pineapple residues into kojic acid by Aspergillus flavus: a prospective study. World Acad. Sci. Eng. Technol. 7, 145–147 (2013)

    Google Scholar 

  32. 32.

    J.H. Kim, B.C. Campbell, K.L. Chan, N. Mahoney, R.P. Haff, Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid. Molecules 18(2), 1564–1581 (2013)

    Google Scholar 

  33. 33.

    H.K. Ali, M.M. Zulkali, Utilization of agro-residual ligno-cellulosic substances by using solid state fermentation: a review. J. Food Technol. Biotechnol. Nutr. 6(1–2), 5–12 (2011)

    Google Scholar 

  34. 34.

    C. Sie, Z. Ngaini. Incorporation of kojic acid-azo dyes on TiO2 thin films for dye sensitized solar cells applications. J. Solar Energy 2017, Article ID 2760301.

  35. 35.

    M.M. Hazzaa, A.M. Saad, H.M. Hassan, E.I. Ibrahim, High production of kojic acid crystals by isolated Aspergillus oryzae var. effusus NRC14. J. Appl. Sci. Res. 9(3), 1714–1723 (2013)

    Google Scholar 

  36. 36.

    I.A. Mohammed, A. Mustapha, Synthesis of new azo compounds based on N-(4-hydroxypheneyl) maleimide and N-(4-methylpheneyl) maleimide. Molecules 15(10), 7498–7508 (2010)

    Google Scholar 

  37. 37.

    H. Kaatz, K. Streffer, U. Wollenberger, M.G. Peter, Inhibition of mushroom tyrosinase by kojic acid octanoates. Z. Naturfo. C. 54(1–2), 70–74 (1999)

    Google Scholar 

  38. 38.

    F. Karcı, Synthesis of disazo dyes derived from heterocyclic components. Color Technol. 121(5), 275–280 (2005)

    Google Scholar 

  39. 39.

    J. Waewsak, S. O-Thong, R. Sungkharak, N. Syafinar, M. Gomesh, M. Irwanto, Y. Fareq, M. Irwan, Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC). Energy Proc. 79, 896–902 (2015)

    Google Scholar 

  40. 40.

    H.R. Maradiya, Synthesis and dyeing performance of some novel thiazole azo disperse dyes. J. Saudi Chem. Soc. 14(1), 77–81 (2010)

    Google Scholar 

  41. 41.

    K. Shirai, A. Oshida, M. Matsuoka, Absorption spectra and tautomerism of aminonaphthazarins. J. Soc. Dyers Colour 114(2), 56–61 (1998)

    Google Scholar 

  42. 42.

    F. Zsila, Z. Bikádi, M. Simonyi, Unique, pH-dependent biphasic band shape of the visible circular dichroism of curcumin-serum albumin complex. Biochem. Biophys. Res. Commun. 301(3), 776–782 (2003)

    Google Scholar 

  43. 43.

    F. Zsila, Z. Bikadi, M. Simonyi, Molecular basis of the cotton effects induced by the binding of curcumin to human serum albumin. Tetrahedron Asymmetry 14(16), 2433–2444 (2003)

    Google Scholar 

  44. 44.

    O.K. Oviri, A.J. Ekpunobi, Transmittance and band gap analysis of dye sensitized solar cell. Res. J. Recent Sci. 2(1), 25–31 (2013)

    Google Scholar 

  45. 45.

    S. Mahalingam, H. Abdullah, S. Shaari, A. Muchtar, I. Asshari, Structural, morphological, and electron transport studies of annealing dependent In2O3dye-sensitized solar cell. Sci. World J. 2015, 403848 (2015)

    Google Scholar 

  46. 46.

    Y.H. Jung, K.H. Park, J.S. Oh, D.H. Kim, C.K. Hong, Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells. Nanoscale Res. Lett. 8(1), 1–6 (2013)

    Google Scholar 

  47. 47.

    O. Treutler, R. Ahlrichs, J. Chem. Phys. 102, 346–354 (1995)

    ADS  Google Scholar 

  48. 48.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada,M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro,M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi,J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi,M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken,C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski,G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas,J.B. Foresman, J.V. Ortizx, J. Cioslowski, D.J. Fox, Gaussian 09, Revision E.01,Gaussian, Inc, Wallingford CT, 2009.

  49. 49.

    M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108, 4439–4449 (1998)

    ADS  Google Scholar 

  50. 50.

    R. Dennington, T. Keith, J. Millam, K. S. Shawnee Mission, Gauss View, Version 5, Semichem Inc., 2009.

  51. 51.

    J. Shi, L. Wang, Y. Liang, S. Peng, F. Cheng, J. Chen, All-solid-state dye-sensitized solar cells with alkyloxy-imidazolium iodide ionic polymer/SiO2 nanocomposite electrolyte and triphenylamine-based organic dyes. J. Phys. Chem. 114(14), 6814–6821 (2010)

    Google Scholar 

  52. 52.

    M.S. Kang, J.H. Kim, J. Won, Y.S. Kang, Oligomer approaches for solid-state dye-sensitized solar cells employing polymer electrolytes. J. Phys. Chem. 111(13), 5222–5228 (2007)

    Google Scholar 

Download references


The authors would like to acknowledge Tianjin University for providing startup research fund. This work was also supported by Ministry of Science, Technology and Innovation under F07/FRGS/1883/2019 and FRGS/ST01 (01)/1298/2015(15).

Author information



Corresponding authors

Correspondence to Muhammad Kashif or Rohit L. Vekariya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kashif, M., Ngaini, Z., Harry, A.V. et al. An experimental and DFT study on novel dyes incorporated with natural dyes on titanium dioxide (TiO2) towards solar cell application. Appl. Phys. A 126, 716 (2020).

Download citation


  • Azo derivatives
  • KAZO 6
  • Turmeric
  • Spectroscopic
  • Optical
  • Electrical
  • DSSC