Skip to main content
Log in

Temperature dependent electrical properties of YSZ synthesized through microwave combustion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, Yttria Stabilized Zirconia (YSZ) was synthesized rapidly through microwave combustion. Subsequently, the synthesized YSZ was conventional sintered at different temperatures, ranging from 1200 to 1400 ºC at 50 °C intervals. X-ray diffraction results confirmed that the synthesized YSZ belongs to the cubic phase. Further, the investigation of microstructures of sintered YSZ using SEM analysis confirmed the temperature dependent grain growth behavior. Among the sintered YSZ, the sample sintered at 1400 ºC was found to possess the highest median particle size (4.77 µm), as well as average grain size (4.15 µm) with increased relative density (92%). Impedance studies for the YSZ samples sintered at different temperatures revealed that the conductivity is directly proportional to the relative density and operating temperature. Accordingly, the sample sintered at 1400 °C showed the highest ionic conductivity of 5.68 × 10–2 S/cm at 700 °C. The data resulted from various studies, suggesting that the YSZ synthesized through microwave assisted approach yields conductivity and dielectric behavior similar to conventional methods. Hence, this approach could also be extended to the synthesis of various electrolyte materials (E.g., LSDF, LSCO, and BSCF) that can be used in solid oxide fuel cells at a low cost and in a short duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Mizutani, K. Hisada, K. Ukai, H. Sumi, M. Yokoyama, Y. Nakamura, O. Yamamoto, J. Alloys. Compd. 408, 518 (2006)

    Google Scholar 

  2. N.P. Brandon, S. Skinner, B.C. Steele, Annu. Rev. Mater. Res. 33, 183 (2003)

    ADS  Google Scholar 

  3. D.J. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Chem. Soc. Rev. 37, 1568 (2008)

    Google Scholar 

  4. J.B. Young, Annu. Rev. Fluid. Mech. 39, 193 (2007)

    ADS  Google Scholar 

  5. J.A. Kilner, M. Burriel, Annu. Rev. Mater. Res. 44, 365 (2014)

    ADS  Google Scholar 

  6. T.H. Etsell, S.N. Flengas, Chem. Rev 70, 339 (1970)

    Google Scholar 

  7. S.P.S. Badwal, Solid State Ionics 52, 23 (1992)

    Google Scholar 

  8. O.M. Hajizadeh, R.S. Razavi, M. Khajelakzay, J. Sol-Gel, Sci. Technol 73, 227 (2015)

    Google Scholar 

  9. D.H. Prasad, H.R. Kim, J.S. Park, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, J. Alloys. Compd. 495, 238 (2010)

    Google Scholar 

  10. A. Suda, T. Kandori, Y. Ukyo, H. Sobukawa, M. Sugiura, J. Ceram. Soc. Jpn. 108, 473 (2000)

    Google Scholar 

  11. K. Nomura, Y. Mizutani, M. Kawai, Y. Nakamura, O. Yamamoto, Solid State Ionics 132, 235 (2000)

    Google Scholar 

  12. S. Indris, D. Bork, P. Heitjans, J. Mater. Synth. Process. 8, 245 (2000)

    Google Scholar 

  13. Z. Wang, R. Hui, N. Bogdanovic. Z. Tang, S. Yick, Y. Xie, I. Yaroslavski, A. Burgess, R. Maric, D.J. Ghosh, Power Sources. 170, 145 (2007)

  14. F. Li, Y. Li, Z. Song. F. Ma, K. Xu, H.J. Cui, Eur. Ceram. Soc. 35, 2361 (2015)

  15. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. 116, 14493 (2016)

    Google Scholar 

  16. M. Marinšek, K. Zupan, J. Maeek, J. Power Sources. 106, 178 (2002)

    ADS  Google Scholar 

  17. P. Prabunathan, A. Hariharan, M. Alagar, Polymer Plastics Technol. Eng. 55, 542 (2016)

    Google Scholar 

  18. Y.Y. Kannangara, P. Prabunathan, J.K. Song, New. J. Chem 42, 15387 (2018)

    Google Scholar 

  19. P. Kumar, N.K. Singh, R.K. Singh, P. Singh, Appl. Phys. A 121, 635 (2015)

    ADS  Google Scholar 

  20. J. Liu, S. Bai, Appl. Phys A 123, 293 (2017)

    ADS  Google Scholar 

  21. M.J, Gronnow, R. J. White, J.H. Clark, D. J. Macquarrie, Org. Process Res. DeV. 9, 516 (2005)

  22. A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Angew. Chem. Int. Ed. 121, 8471 (2009)

    Google Scholar 

  23. K. Morsi, J. Mater Sci 47, 68 (2012)

    ADS  Google Scholar 

  24. C.A. Bizzi, M.F. Pedrotti, J.S. Silva, J.S. Barin, J.A. Nóbrega, E.M.M. Flores, J. Anal. Atom. Spectrom 32, 1448 (2017)

    Google Scholar 

  25. J.-S. Xu, Y.-J. Zhu, Cryst. Eng. Comm. 14, 2630 (2012)

    Google Scholar 

  26. S.K. Vijay, V. Chandramouli, S. Khan, P.C. Clinsha, S. Anthonysamy, Ceram Int. 40, 16689 (2014)

    Google Scholar 

  27. E. Satheeshkumar, P. Anbarasi, K. Ilango, P. Prabunathan, P. Manohar, Mater. Technol. 32, 638 (2017)

    Google Scholar 

  28. C.A. Da Silva, N.F. Ribeiro, M.M. Souza, Ceram Int. 35, 3441 (2009)

    Google Scholar 

  29. S.J. Rajoba, L.D. Jadhav, P.S. Patil, D.K. Tyagi, S. Varma, B.N. Wani, J. Electron. Mater. 46, 1683 (2017)

    ADS  Google Scholar 

  30. R. Li, C. Zhang, J. Liu, J. Zhou, L. Xu, Appl. Phys. A 125, 773 (2019)

    Google Scholar 

  31. T. He, Q. He, N. Wang, J. Alloys, Compd 396, 309 (2005)

    Google Scholar 

  32. T. Talebi, M. Haji, B. Raissi, Int. J. Hydrogen Energy. 35, 9420 (2010)

    Google Scholar 

  33. O.J. Durá, M.L. de la Torre, L. Vázquez, J. Chaboy, R. Boada, A. Rivera-Calzada, J. Santamaria, C. Leon, Physical. Rev. B. 81, 184301 (2010)

    ADS  Google Scholar 

  34. K. Rajeswari, M.B. Suresh, U.S. Hareesh, Y.S. Rao, D. Das, R. Johnson, Ceram. Int. 37, 3557 (2011)

    Google Scholar 

  35. P. Carpio, E. Bannier, M.D. Salvador, A. Borrell, R. Moreno, E. Sánchez, Surf. Coat. Technol. 268, 293 (2015)

    Google Scholar 

  36. A.T. Duong, D.R. Mumm, J. Electrochem. Soc. 159, B39 (2011)

    Google Scholar 

  37. Q. Wang, R. Peng, C. Xia, W. Zhu, H. Wang, Ceram. Int. 34, 1773 (2008)

    Google Scholar 

  38. J. Zhang, X. Huang, H. Zhang, Q. Xue, H. Xu, L. Wang, Z. Feng, RSC Adv. 7, 39153 (2017)

    Google Scholar 

  39. T. Liu, J. Fang, S. Li, C. Wang, C. Ji, J. Ceram. Soc. Jap. 123, 554 (2015)

    Google Scholar 

  40. A. Infortuna, A.S. Harvey, L.J. Gauckler, Adv. Funct. Mater. 18, 127 (2008)

    Google Scholar 

  41. H. Zhu, R.S. Averback, Mater. Manuf. Process. 11, 905 (1996)

    Google Scholar 

  42. H. Zhao, X. Li, F. Ju, U. Pal, J. Mater. Process. Technol. 200, 199 (2008)

    Google Scholar 

  43. H.J Ko, J.H. Myung, S.H. Hyun, J.S. Chung, J. Appl. Electrochem. 42, 209 (2012)

  44. K. Sarkar, S. Mukherjee, S. Mukherjee, M.K. Mitra, J. Inst. Eng. India Ser. D. 95, 135 (2014)

    Google Scholar 

  45. C. Wang, N. Zhang, Q. Li, Y. Yu, J. Zhang, Y. Li, H. Wang, J. Am. Ceram. Soc. 98, 148 (2015)

    Google Scholar 

  46. O.P. Nautiyal, S.C. Bhatt, Am. J. Condens. Matter. Phys. 1, 8 (2011)

    Google Scholar 

  47. X. Huang, H. Zhang, Y. Lai, J. Li, Appl. Phys. A 123, 317 (2017)

    ADS  Google Scholar 

  48. P. Jena, S. Jayasubramaniyan, P.K. Patro, R.K. Lenka, A. Sinha, P. Muralidharan, E.S. Srinadhu, N. Satyanarayana, Appl. Phys. A 124, 125 (2018)

    ADS  Google Scholar 

  49. A. Sen, Appl. Phys. A 126, 36 (2020)

    ADS  Google Scholar 

  50. M.D. Stamate, Appl. Surf. Sci. 218, 318 (2003)

    ADS  Google Scholar 

  51. R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, M. Awano, Mater. Lett. 58, 1593 (2004)

    Google Scholar 

  52. A. Kumar, S.S. Yadava, P. Gautam, A. Khare, K.D. Mandal, J. Electroceramics 42, 47 (2019)

    Google Scholar 

  53. N.H. Perry, T.C. Yeh, T.O. Mason, J. Am. Ceram. Soc 94, 508 (2011)

    Google Scholar 

  54. R. Kumar, M. Zulfequar, T.D. Senguttuvan, J. Electroceramics 42, 41 (2019)

    Google Scholar 

  55. S.K. Patri, P.L. Deepti, R.N.P. Choudhary, B. Behera, J. Electroceramics 40, 338 (2018)

    Google Scholar 

  56. T. He, Q. He, N. Wang, J. Alloys. Compd. 396, 309 (2005)

    Google Scholar 

  57. E. Courtin, P. Boy, T. Piquero, J. Vulliet, N. Poirot, C. Laberty-Robert, J. Power Sources. 206, 77 (2012)

    Google Scholar 

  58. C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Phys. Chem. Chem. Phys 10, 4623 (2008)

    Google Scholar 

  59. C. Zhang, C.J. Li, G. Zhang, X.J. Ning, C.X. Li, H. Liao, C. Coddet, Mater. Sci. Eng. B 137, 24 (2007)

    Google Scholar 

  60. J.B. Bauerle, J. Phys. Chem. Solids. 30, 2657 (1969)

    ADS  Google Scholar 

  61. M. Aoki, Y.M. Chiang, I. Kosacki, L.J. Lee, H.L. Tuller, Y. Liu, J. Am. Ceram. Soc. 79, 1169 (1996)

    Google Scholar 

  62. A. Pugazhendhi, S. Ellappan, I. Kumaresan, M. Paramasivam, Appl. Phys. A. 123, 407 (2017)

    ADS  Google Scholar 

  63. S. Subramanian, D.P. Padiyan, J. Mater. Sci. 44, 6040 (2009)

    ADS  Google Scholar 

  64. A. Pugazhendhi, S. Ellappan, I. Kumaresan, M. Paramasivam, Ionics 24, 3745 (2018)

    Google Scholar 

  65. H.C. Yao, X.W. Wang, H. Dong, R.R. Pei, J.S. Wang, Z.J. Li, Ceram. Int. 37, 3153 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Manohar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satheeshkumar, E., Prabunathan, P., Anbarasi, P. et al. Temperature dependent electrical properties of YSZ synthesized through microwave combustion. Appl. Phys. A 126, 780 (2020). https://doi.org/10.1007/s00339-020-03893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03893-9

Keywords

Navigation