Skip to main content
Log in

Bismuth (III) oxide/polyethylene terephthalate nanocomposite fiber coated polyester spunbonds for ionizing radiation protection

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 23 June 2022

This article has been updated

Abstract

Conventional radiation-shielding aprons are uncomfortable and heavy for medical staff working at radio diagnostic areas. By virtue of manufacturing functional textile surfaces with high-radiation protection efficiency, these disadvantages of shielding garments can be eliminated. The aim of this study is production of a lightweight and comfortable textile-based shielding surface against ionizing radiation. In this paper, bismuth (III) oxide (Bi2O3) powder and polyethylene terephthalate (PET) polymer were used for coating polyester (PES) spunbond by electrospinning technology. Morphological properties were examined with SEM, EDX and FT-IR tests and thickness of samples were measured. X-ray characteristics of coated PES spunbonds were investigated by commercial computed tomography unit and electrometer. According to values read by electrometer, linear attenuation coefficient, thickness for half value layer (HVL) and tenth-value layer (TVL) and shielding performance of different amount of Bi2O3 loaded samples were calculated with corresponding formulas. Results showed that ionizing radiation shielding performance of Bi2O3/PET nanocomposite fiber-coated PES spunbonds were better than that of undoped PET nanofibers coated ones. X-ray attenuation increased with increase of Bi2O3 loading. Bi2O3/PET nanocomposite fiber-coated PES spunbonds with their multilayered forms are alternative promising surfaces for production of wearable shielding garments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. G. Russo, G. Lamberti, J. Appl. Polym. Sci. 122, 6 (2011)

    Google Scholar 

  2. M. Faccini, C. Vaquero, D. Amantia, J. Nanomater. 2012, 2 (2012)

    Google Scholar 

  3. R. Rajeswari, V.J. Reddy, S. Subramanian, M. Shayanti, S. Radhakrishnan, R. Seeram, Nanotechnology 23, 38 (2012)

    Google Scholar 

  4. Y.K. Fuh, L.C. Lien, Nanotechnology, 24, 5 (2013)

    Google Scholar 

  5. H. Storrie, D. J. Mooney, J. Adv. Drug Deliv. Rev. 58, 4 (2006)

    Google Scholar 

  6. D.G. Yu, L.M. Zhu, K. White, C. Branford-White, Health 1, 2 (2009)

    Google Scholar 

  7. N.Z. Noor Azman, S.A. Siddiqui, R. Hart, I.M. Low, Appl. Radiat. Isot. 71, 62 (2013)

    Google Scholar 

  8. E.W. Taylor, D.A. Cardimona, Proceedings of nanophotonics and macrophotonics for space environments, 1st edn. (SPIE, Bellingham, 2007), pp. 6713–6806

    Google Scholar 

  9. H. Ji, R. Zhao, N. Zhang, C. Jin, X. Lu, C. Wang, NPG Asia Mater. 10, 8 (2018)

    Google Scholar 

  10. H.R. Pant, M.P. Bajgai, K.T. Nam, Y.A. Seo, D.R. Pandeya, S.T. Hong, H.Y. Kim, J. Hazard. Mater. 185, 124–130 (2011)

    Google Scholar 

  11. C. Li, S. Shu, R. Chen, B. Chen, W. Dong, J. Appl. Polym. Sci. 130, 3 (2013) 

    Google Scholar 

  12. S. Lee, Fibers Polym. 10, 3 (2009)

    Google Scholar 

  13. F.J. Liu, Q.N. Cui, J.H. He, D.D. Fei, J. Nano Res. 27, 121–127 (2014)

    Google Scholar 

  14. M.M. Demir, M.A. Gulgun, Y.Z. Menceloglu, B. Erman, S.S. Abramchuk, E.E. Makhaeva, A.R. Khokhlov, V.G. Matveeva, M.G. Sulman, Macromolecules, 37, 5 (2004)

    Google Scholar 

  15. F. El Haber, G. Froyer, J. Univ. Chem. Technol. Metall. 43, 3 (2008)

    Google Scholar 

  16. B. Shanshan, S.H. Jayaram, E.A. Cherney, Use of electrospinning to disperse nanosilica into silicone rubber. 2010 Annual report conference on electrical ınsulation and dielectic phenomena, IEEE, West Lafayette, pp 1–4 2010

  17. M.Z. Botelho, R. Kunzel, E. Okuno, R.S. Levenhagen, T. Basegio, C.P. Bergmann, Appl. Radiat. Isotopes, 69, 2 (2011)

    Google Scholar 

  18. S.C. Kim, K.R. Dong, W.K. Chung, J. Korean Phys. Soc. 60, 1 (2012)

    Google Scholar 

  19. H. Cetin, A. Yurt, S. Haznacı Yüksel, Radiat. Prot. Dosim. 174, 4 (2016)

    Google Scholar 

  20. V.S. Ivanov, Radiation chemistry of polymers, 1st edn. (VSP Publishing, Utrecht, 1992), pp. 197–204

    Google Scholar 

  21. J.G. Drobny, Ionizing radiation and polymers: principles, technology, and applications, 1st edn. (William Andrew Publishing, Amsterdam, 2012), pp. 213–218

    Google Scholar 

  22. C.A. Hampel, The encyclopedia of the chemical elements, 1st edn. (Reinhold Book Corporation, New York, 1968), pp. 706–711

    Google Scholar 

  23. L. Zhang, Y. Hashimoto, T. Taishi, I. Nakamura, Q.Q. Ni, Appl. Surf. Sci. 257, 15 (2011)

    Google Scholar 

  24. N. Chanthima, J. Kaekwkhao, C. Kedkaew, W. Chewpraditkul, A. Pokaipisit, P. Limsuwan, Prog. Nucl. Sci. Technol. 1, 106–109 (2011)

    Google Scholar 

  25. D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, J. Alloy. Compd. 749, 1036–1042 (2018)

    Google Scholar 

  26. B.M. Abunahel, I.S. Mustafa, N.Z.N. Azman, Appl. Phys. A. 124, 12 (2018)

    Google Scholar 

  27. N.Z. Noor Azman, S.A. Siddiqui, I.M. Low, Appl. Phys. A. 110, 1 (2013)

    Google Scholar 

  28. M.H. Hazlan, M. Jamil, R.M. Ramli, N.Z.N. Azman, Appl. Phys. A. 124, 497 (2018)

    ADS  Google Scholar 

  29. B. Veleirinho, M.F. Rei, J.A. Lopez-Da-Silva, J. Polym. Sci. B Polym. Phys. 46, 5 (2008)

    Google Scholar 

  30. I. Akkurt, S. Emikonel, F. Akarslan, K. Gunoglu, S. Kılıcarslan, I.S. Uncu, Acta Phys. Pol. A 128, 2B (2015)

    Google Scholar 

  31. B. Kusuktham, C. Wichayasiri, S. Udon, J. Met. Mater. Miner. 26, 1 (2016)

    Google Scholar 

  32. S. Kilincarslan, I. Akkurt, I.S. Uncu, F. Akarslan, Acta Phys Pol A 129, 4 (2016)

    Google Scholar 

  33. M.R. Ambika, N. Nagaih, Indian J. Adv. Chem. Sci. S2, 2017 (2017)

    Google Scholar 

  34. N. Aral, F.B. Nergis, C. Candan, Tex. Conf. 26, 2 (2016)

    Google Scholar 

  35. J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. (NIST Publications, 2004). https://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html. Accessed 03 May 2018.

  36. P.S. Dahinde, G.P. Dapke, S.D. Raut, R.R. Bhosale, P.P. Pawar, Indian J. Sci. Res. 9, 2 (2019)

    Google Scholar 

  37. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2003 (2003)

    Google Scholar 

  38. G.S. Kozanoglu, Elektrospinning yöntemiyle nanolif üretim teknolojisi (İstanbul Technical University, İstanbul, 2006), pp. 35–71

    Google Scholar 

  39. V. Gruver, D. Showers, M.Y. Kao, L. Klebanov, The determination of PET crystinallity by different analytical techniques, SPE/ANTEC 2000 proceedings annual technical conference papers (CRC Press, Orlando, 2000), pp. 1636–1640

    Google Scholar 

  40. D.M. Martin, M.M. Ahmed, M. Rodriguez, M.A. Garcia, M. Faccini, Materials (Basel) 10, 12 (2017)

    Google Scholar 

  41. E. Esmaeili, F. Deymeh, S.A. Rounaghi, Int. J. Nano Dimens. 8, 2 (2017)

    Google Scholar 

  42. H. Eder, Lead substitute material for radiation protection purposes, US Patent 7041995 B2, May 9 (2006)

  43. J.P. McCaffrey, H. Shen, B. Downton, E. Mainegra-Hing, Med. Phys. 34, 2 (2007)

    Google Scholar 

  44. H. Eder, Lead-free, radiation protection material comprising at least two layers with different shielding characteristics. US Patents 7449705 B2, Nov 11 (2008)

  45. ASTM F 2547–06, Standard Test method for determining the attenuation properties in a primary x-ray beam of materials used to protect against radiation generated during the use of x-ray equipment, (2006)

  46. DIN 6857–1, Radiation protection accessories for medical use of x-radiation, (2009)

  47. J.P. McCaffrey, E. Mainegra-Hing, H. Shen, Med. Phys. 36, 12 (2009)

    Google Scholar 

Download references

Acknowledgements

Authors would like to express their special thanks to Dr. Cigdem YILDIZ (Chief of Health Physic at Saraykoy Nuclear Energy Unit of Turkish Atomic Energy Authority) and Medical Physic Expert Instructor Selami EKEN (Expert at Radiation Oncology in Kahramanmaras Sutcu Imam University) (Grant number BAP2015/1-48D.) for their kind supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayriye Hale Aygün.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aygün, H.H., Alma, M.H. Bismuth (III) oxide/polyethylene terephthalate nanocomposite fiber coated polyester spunbonds for ionizing radiation protection. Appl. Phys. A 126, 693 (2020). https://doi.org/10.1007/s00339-020-03880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03880-0

Keywords

Navigation