Skip to main content

Implantable antenna gain enhancement using liquid metal-based reflector

Abstract

This article presents gain enhancement methodology for a dual-ring slot antenna using a frequency selective surface (FSS) as reflector. The FSS structure is formed with liquid metal placed inside the microfluidic channels created on the surface of the polydimethylsiloxane. Non-toxic liquid metal galinstain has been used to ensure biocompatibility. The FSS structure is placed below the ring slot antenna to reflect the back radiation, which in turn enhances the antenna directivity. Subsequently, the antenna gain has been increased as well. A fabricated prototype of the antenna-FSS system, operating at 2.45 GHz, has been analysed both inside human tissue mimicking fluid and pork slab to validate the simulation results. The inclusion of the liquid metal-based reflector increases antenna gain by almost 4 dB as well as ensures required biocompatibility and flexibility. Also the specific absorption rate of the antenna is observed to be reduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. A. Kiourti, R.M. Shubair, in Procedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diago, p. 1677–1678, 2017; https://doi.org/10.1109/APUSNCURSINRSM.2017.8072881

  2. A. Kiourti, K.S. Nikita, IEEE Antennas Propag. Mag. 54, 210 (2012). https://doi.org/10.1109/MAP.2012.6293992

    ADS  Article  Google Scholar 

  3. Z. Tang, B. Smith, J.H. Schild, P.H. Peckham, IEEE Trans. Biomed. Engg. 42, 524 (1995). https://doi.org/10.1109/10.376158

    Article  Google Scholar 

  4. P. Valdastri, A. Menciassi, A. Arena, C. Caccamo, P. Dario, IEEE Trans. Inform. Tech. Biomed 8, 271 (2004). https://doi.org/10.1109/TITB.2004.834389

    Article  Google Scholar 

  5. W. Lei, Y.X. Guo, in proceedings of the. IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Singapore, p. 1–3, 2013; https://doi.org/10.1109/IMWS-BIO.2013.6756212

  6. C.J. Sánchez-Fernández, O. Quevedo-Teruel, J. Requena-Carrión, L. Inclán-Sánchez, E. Rajo-Iglesias, I.E.T. Microw, Antennas Propag. 4, 1048 (2010). https://doi.org/10.1049/iet-map.2009.0594

    Article  Google Scholar 

  7. J.F. Iglesias, D. Graf, P. Pascale, E. Pruvot, Cardiovasc. Med. 12, 85 (2009)

    Google Scholar 

  8. L. Venkatraghavan, V. Chinnapa, P. Peng, R. Brull, Can. J. Anesth. 56, 320 (2009). https://doi.org/10.1007/s12630-009-9056-3

    Article  Google Scholar 

  9. B.D. Shrivastava, B.R. Barde, A. Mishra, S. Phadke, J. Phys. Conf. Ser. 534, 012062 (2014). https://doi.org/10.1088/1742-6596/534/1/012062

    Article  Google Scholar 

  10. H.J. Kim, H. Hirayama, S. Kim, K.J. Han, R. Zhang, J.W. Choi, IEEE Access. 5, 21264 (2017). https://doi.org/10.1109/ACCESS.2017.2757267

    Article  Google Scholar 

  11. N. Cho, L. Yan, J. Bae, H.J. Yoo, IEEE J. Solid-State Cir. 44, 708 (2009). https://doi.org/10.1109/JSSC.2008.2012328

    ADS  Article  Google Scholar 

  12. D. Naranjo-Hernández, A. Callejón-Leblic, Z. LučevVasić, M.H. Seyedi, Y.M. Gao, Wirel. Comm. Mob. Comp. 2018, 1–39 (2018). https://doi.org/10.1155/2018/9026847

    Article  Google Scholar 

  13. S. Zhu, S. Almari, A. AlAmoudi, R. Langley, in Proceedings of the 7th European Conference on Antenna and Propagation (EuCAP), Gothenberg, Sweden, p. 3247–3248, 2013.

  14. S. Almari, A. AlAmoudi, R. Langley, IET Electric. Lett. 52, 800 (2016). https://doi.org/10.1049/el.2015.3371

    ADS  Article  Google Scholar 

  15. S. Das, D. Mitra, IEEE Trans. Antenna Propag. 66, 4309 (2018). https://doi.org/10.1109/TAP.2018.2836463

    ADS  Article  Google Scholar 

  16. M.B. Nasab, M.R. Hassan, B.B. Sahari, Trends Biomater. Artif. Organs. 24, 69 (2010)

    Google Scholar 

  17. L. Yi, J. Liu, Intern. Mat. Rev. 62, 415 (2017). https://doi.org/10.1080/09506608.2016.1271090

    Article  Google Scholar 

  18. J. Yan, Y. Lu, G. Chen, M. Yang, Z. Gu, Chem. Soc. Rev. 47, 2518 (2018). https://doi.org/10.1039/C7CS00309A

    Article  Google Scholar 

  19. T. Liu, P. Sen, C.J. Kim, IEEE J. Microelectromech. Syst. 21, 443 (2012). https://doi.org/10.1109/JMEMS.2011.2174421

    Article  Google Scholar 

  20. X. Wang, J. Liu, Micromachines 7, 206 (2016). https://doi.org/10.3390/mi7120206

    Article  Google Scholar 

  21. F. Liu, Y. Yu, L. Yi, J. Liu, Sci. Bull. 61, 939 (2016). https://doi.org/10.1007/s11434-016-1090-2

    Article  Google Scholar 

  22. C. Jin, J. Zhang, X. Li, X. Yang, J. Li, J. Liu, Sci. Rep. 3, 3442 (2013). https://doi.org/10.1038/srep03442

    ADS  Article  Google Scholar 

  23. C. Guo, L. Yi, Y. Yu, J. Liu, Appl. Phys. A. 122, 1070 (2016). https://doi.org/10.1007/s00339-016-0585-7

    ADS  Article  Google Scholar 

  24. A. Dey, R. Guldiken, G. Mumcu, IEEE Trans. Antennas Propag. 64, 2572 (2016). https://doi.org/10.1109/TAP.2016.2551358

    ADS  Article  Google Scholar 

  25. K.J. Sarabia, S.S. Yamada, A. Moorefield, W. Combs, A.T. Ohta, W.A. Shiroma, Intern. J. Antennas Propag. (2018). https://doi.org/10.1155/2018/1248459

    Article  Google Scholar 

  26. M. Cosker, L. Lizzi, F. Ferrero, R. Staraj, J. Ribero, IEEE Antennas Wirel. Propag. Lett. 16, 971 (2017). https://doi.org/10.1109/LAWP.2016.2615568

    ADS  Article  Google Scholar 

  27. A. Ha, M.H. Chae, K. Kim, IEEE Antennas Wirel. Propag. Lett. 18, 571–575 (2019). https://doi.org/10.1109/LAWP.2019.2894397

    ADS  Article  Google Scholar 

  28. Z. Chen, H. Wong, J. Kelly, IEEE Trans. Antennas Propag. 67, 3427 (2019). https://doi.org/10.1109/TAP.2019.2901132

    ADS  Article  Google Scholar 

  29. L. Song, W. Gao, C.O. Chui, Y. Rahmat-Samii, IEEE Trans. Antennas Propag. 67, 2886 (2019). https://doi.org/10.1109/TAP.2019.2902651

    ADS  Article  Google Scholar 

  30. M.N. Ramli, P.J. Soh, M.F. Jamlos, H. Lago, N.M. Aziz, A.A. Al-Hadi, Appl. Phys. A 123, 149 (2017). https://doi.org/10.1007/s00339-017-0754-3

    ADS  Article  Google Scholar 

  31. S. Ghosh, S. Lim, IEEE Trans. Antennas Propag. 66, 4953 (2018). https://doi.org/10.1109/TAP.2018.2851455

    ADS  Article  Google Scholar 

  32. F.A. Tahir, T. Arshad, S. Ullah, J.A. Flint, Microw. Opt. Tech. Lett. 59, 2698 (2017). https://doi.org/10.1002/mop.30789

    Article  Google Scholar 

  33. Y. Ranga, L. Matekovits, K.P. Esselle, A.R. Weily, IEEE Antennas Wirel. Propag. Lett. 10, 219 (2011). https://doi.org/10.1109/LAWP.2011.2130509

    ADS  Article  Google Scholar 

  34. R. Deng, F. Yang, S. Xu, M. Li, IEEE Trans. Antennas Propag. 65, 926 (2017). https://doi.org/10.1109/TAP.2016.2633159

    ADS  Article  Google Scholar 

  35. A. Attachi, C. Saleh, M. Bouzouad, Appl. Phys. A 123, 78 (2017). https://doi.org/10.1007/s00339-016-0641-3

    ADS  Article  Google Scholar 

  36. P. Gurrala, S. Oren, P. Liu, J. Song, L. Dong, IEEE Antennas Wirel. Propag. Lett. 16, 2602 (2017). https://doi.org/10.1109/LAWP.2017.2735196

    ADS  Article  Google Scholar 

  37. A. Victor, J. Ribeiro, F.F. Araújo, J. Mech. Eng. Biomech. 4, 1 (2019). https://doi.org/10.24243/JMEB/4.1.163

    Article  Google Scholar 

  38. C.P. Constantin, M. Aflori, R.F. Damian, R.D. Rusu, Materials. 12, 3166 (2019). https://doi.org/10.3390/ma12193166

    ADS  Article  Google Scholar 

  39. C. Liu, Y.-X. Guo, S. Xiao, IEEE Trans. Antennas Propag. 62, 2407 (2014). https://doi.org/10.1109/TAP.2014.2307341

    ADS  Article  Google Scholar 

  40. T. Karacolak, A.Z. Hood, E. Topsakal, IEEE Trans. Micro. Theo. Tech. 56, 1001 (2008). https://doi.org/10.1109/TMTT.2008.919373

    ADS  Article  Google Scholar 

  41. S. Bhattacharjee, S. Maity, S.R.B. Chaudhuri, M. Mitra, I.E.T. Microw, Antennas Propag. 12, 1799 (2018). https://doi.org/10.1049/iet-map.2017.1143

    Article  Google Scholar 

  42. S.A.A. Shah, H. Yoo, IEEE Trans. Antennas Propag. 66, 2170 (2018). https://doi.org/10.1109/TAP.2018.2801346

    ADS  Article  Google Scholar 

  43. Y. Fan, H. Liu, X. Liu, Y. Cao, Z. Li, M. Manos, IET Microw. Antennas Propag. 14, 199 (2020). https://doi.org/10.1049/iet-map.2018.6171

    Article  Google Scholar 

  44. G. Samanta, D. Mitra, IET Microw. Antennas Propag. 14, 177 (2020). https://doi.org/10.1049/iet-map.2019.0132

    Article  Google Scholar 

Download references

Acknowledgements

For research support, S. Das acknowledges the Visvesvaraya Ph.D. scheme for Electronics & IT research fellowship award and D. Mitra acknowledges the Visvesvaraya Young Faculty research award, under MeitY, Govt. of India. B. Mandal and R. Augustine like to acknowledge Soft intelligence epidermal communication platform (SINTEC) project no. 824984, European Union’s Horizon 2020 and Swedish SSF project LifeSec (RIT170020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyadeep Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, S., Mitra, D., Mandal, B. et al. Implantable antenna gain enhancement using liquid metal-based reflector. Appl. Phys. A 126, 738 (2020). https://doi.org/10.1007/s00339-020-03862-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03862-2

Keywords

  • Biomedical application
  • FSS reflector
  • Gain enhancement
  • Implantable antenna
  • Liquid metal