Skip to main content
Log in

Restoring and enhancing the coercivity of waste sintered (Nd,Ce,Gd)FeB magnets by direct Pr–Tb–Cu grain boundary diffusion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A large amount of wastes are generated during sintered NdFeB production, and recycling of those wastes shows huge economic and environmental benefits. In this work, grain boundary diffusion process is employed to enhance the coercivity of waste sintered (Nd,Ce,Gd)FeB magnets. Pr40Tb30Cu30 alloy is employed as the diffusion source. The coercivity of the waste magnet increased from 763 to 1287 kA/m without a consumption of remanence by optimized diffusion treatment. The maximum energy product and temperature stability of the magnets were also improved. The waste N30 magnet was successfully upgraded to N30M, close to N30H. It is found that that the shell/core structure with a Tb/Pr-rich shell and Nd/Ce/Gd-rich core was formed in the grain boundary diffused magnets, which is the main reason for the enhancement of coercivity and temperature stability. The detailed investigations clarified the distribution preference of different rare earth elements. Tb prefers entering into the main phase, while Pr tends to diffuse along the grain boundaries with large diffusion depth. The Nd, Ce and Gd elements also show different capacities of being replaced. These results suggest that the grain boundary diffusion process can be used as an efficient recycling method for those waste NdFeB magnets which were not seriously oxidized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Gutfleisch, M.A. Willard, E. Bruck, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23, 821 (2011)

    Article  Google Scholar 

  2. S. Sugimoto, J. Phys. D: Appl. Phys. 44, 064001 (2011)

    Article  ADS  Google Scholar 

  3. M. Zakotnik, C.O. Tudor, Waste Manag. 44, 48 (2015)

    Article  Google Scholar 

  4. A. Golev, M. Scott, P.D. Erskine, S.H. Ali, G.R. Ballantyne, Resour. Pol. 41, 52 (2014)

    Article  Google Scholar 

  5. Kataoka Y, Ono T, Tsubota M, Kitagawa J, AIP Adv. 5, 117212 (2015)

    Article  ADS  Google Scholar 

  6. S. Shirayama, T.H. Okabe, Metall. Mater. Trans. B 49, 1067 (2018)

    Article  Google Scholar 

  7. Y. Chen, H. Wang, Y. Pei, J. Ren, J. Wang, ACS Sustain. Chem. Eng. 3, 3167 (2015)

    Article  Google Scholar 

  8. V. Innocenzi, F. Vegliò, J. Power Sour. 211, 184 (2012)

    Article  Google Scholar 

  9. M. Itoh, K. Miura, K-i Machida, J. Alloys Compd. 477, 484 (2009)

    Article  Google Scholar 

  10. T. Uda, Mater. Trans. 43, 55 (2002)

    Article  Google Scholar 

  11. M. Zakotnik, I.R. Harris, A.J. Williams, J. Alloys Compd. 450, 525 (2008)

    Article  Google Scholar 

  12. R.S. Sheridan, R. Sillitoe, M. Zakotnik, I.R. Harris, A.J. Williams, J. Magn. Magn. Mater. 324, 63 (2012)

    Article  ADS  Google Scholar 

  13. Y. Zhang, M. Liu, S. Sun, X. Yin, Y. Yin, J. Guo, W. Liu, D. Zhang, M. Yue, J. Magn. Magn. Mater. 475, 465 (2019)

    Article  ADS  Google Scholar 

  14. H. Sepehri-Amin, T. Ohkubo, M. Zakotnik, D. Prosperi, P. Afiuny, C.O. Tudor, K. Hono, J. Alloys Compd. 694, 175 (2017)

    Article  Google Scholar 

  15. M. Itoh, M. Masuda, S. Suzuki, K-i Machida, J. Alloys Compd. 374, 393 (2004)

    Article  Google Scholar 

  16. X. Li, M. Yue, M. Zakotnik, W. Liu, D. Zhang, T. Zuo, J. Rare Earths 33, 736 (2015)

    Article  Google Scholar 

  17. M. Itoh, K. Nishiyama, F. Shogano, T. Murota, K. Yamamoto, M. Sasada, K-i Machida, J. Alloys Compd. 451, 507 (2008)

    Article  Google Scholar 

  18. H. Nakamura, K. Hirota, M. Shimao, T. Minowa, M. Honshima, IEEE Trans. Magn. 41, 3844 (2005)

    Article  ADS  Google Scholar 

  19. J. Song, S. Guo, G. Ding, K. Chen, R. Chen, D. Lee, A. Yan, J. Magn. Magn. Mater. 469, 613 (2019)

    Article  ADS  Google Scholar 

  20. K.C. Lu, X.Q. Bao, G.X. Chen, X. Mu, X.J. Zhang, X.K. Lv, Y. Ding, X.X. Gao, J. Magn. Magn. Mater. 477, 237 (2019)

    Article  ADS  Google Scholar 

  21. J. Li, L. Liu, H. Sepehri-Amin, X. Tang, T. Ohkubo, N. Sakuma, T. Shoji, A. Kato, T. Schrefl, K. Hono, Acta Mater. 161, 171 (2018)

    Article  Google Scholar 

  22. J. Di, G. Ding, X. Tang, X. Yang, S. Guo, R. Chen, A. Yan, Scripta Mater. 155, 50 (2018)

    Article  Google Scholar 

  23. J.R. Xiao, Z.W. Liu, H.S. Lou, H.X. Zhan, Acta Phys. Sin. 67, 9 (2018)

    Google Scholar 

  24. S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, H. Yamauchi, J. Appl. Phys. 59, 873 (1986)

    Article  ADS  Google Scholar 

  25. Y. Zhang, T. Ma, J. Jin, J. Li, C. Wu, B. Shen, M. Yan, Acta Mater. 128, 22 (2017)

    Article  Google Scholar 

  26. X. Tang, H. Sepehri-Amin, T. Ohkubo, M. Yano, M. Ito, A. Kato, N. Sakuma, T. Shoji, T. Schrefl, K. Hono, Acta Mater. 144, 884 (2018)

    Article  Google Scholar 

  27. T. Ma, M. Yan, K. Wu, B. Wu, X. Liu, X. Wang, Z. Qian, C. Wu, W. Xia, Acta Mater. 142, 18 (2018)

    Article  Google Scholar 

  28. J.F. Herbst, Rev. Mod. Phys. 63, 819 (1991)

    Article  ADS  Google Scholar 

  29. H. Zeng, Z. Liu, W. Li, J. Zhang, L. Zhao, X. Zhong, H. Yu, B. Guo, J. Magn. Magn. Mater. 471, 97 (2019)

    Article  ADS  Google Scholar 

  30. S. Kim, D.-S. Ko, H.-S. Lee, D. Kim, J.W. Roh, W. Lee, J. Alloys Compd. 780, 574 (2019)

    Article  Google Scholar 

  31. W. Li, Q. Zhang, Q. Zhu, S. Xiao, C. Xu, L. Yang, B. Zheng, S. Mao, Z. Song, Scripta Mater. 163, 40 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant no. 51774146) and the Guangdong Key Laboratory of Rare Earth Development and Applications (Grant no. XTKY-201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., He, J., Yu, H. et al. Restoring and enhancing the coercivity of waste sintered (Nd,Ce,Gd)FeB magnets by direct Pr–Tb–Cu grain boundary diffusion. Appl. Phys. A 126, 657 (2020). https://doi.org/10.1007/s00339-020-03857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03857-z

Keywords

Navigation