Skip to main content

Advertisement

Log in

Evaluation of NaOH pre-treatment on the corrosion behavior and surface characteristics of hydroxyapatite coated NiTi alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Successful short-term implementation of nickel-titanium (NiTi) alloys as implants has been a motivation for the development of long-term applications. However, rendering these as safe implant materials is challenging. The major problem associated with the use of NiTi for in-vivo applications is the potential risk of Ni release from the implant surface due to the corrosive environment of the body. Various methods including surface treatment techniques with acid and alkali solutions and application of biocompatible coatings have been used to overcome these difficulties. In particular, NaOH pre-treatment has been commonly performed for surface activation of the substrate material to enhance the adhesion properties of coatings. The present work investigates the effect of NaOH pre-treatment on the hydroxyapatite (HA) coating and the resulting corrosion behavior of and cell response to HA coated NiTi wires. Microstructural examinations showed that the coating integrity deteriorated with prior NaOH treatment which also increased the corrosion rate as evidenced by potentiodynamic measurements. XPS analysis revealed heightened Ni levels on the sample surfaces and cytotoxicity tests showed decreased cell viability for the samples with pre-treatment. Absence of NaOH pre-treatment led to lower contact angle values pointing to higher biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.F. Li, F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, R.Z. Valiev, Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance. J. Mater. Sci. Technol. 35, 2156–2162 (2019). https://doi.org/10.1016/j.jmst.2019.04.026

    Article  Google Scholar 

  2. C.H. NG, C.W. Chan, H.C. Man, D.G. Waugh, J. Lawrence, NiTi shape memory alloy with enhanced wear performance by laser selective area nitriding for orthopaedic applications. Surf. Coat. Technol. 309, 1015–1022 (2017). https://doi.org/10.1016/j.surfcoat.2016.10.042

    Article  Google Scholar 

  3. H. Li, Y. Mao, X. Qu, X. Zhao, K. Dai, Z. Zhu, Nickel-titanium shape-memory sawtooth-arm embracing clamp for complex femoral revision hip arthroplasty. J. Arthroplasty. 31, 850–856 (2016). https://doi.org/10.1016/j.arth.2015.10.044

    Article  Google Scholar 

  4. N. Pandis, C.P. Bourauel, Nickel-Titanium (NiTi) Arch Wires: The Clinical Significance of Super Elasticity. Semin. Orthod. 16, 249–257 (2010). https://doi.org/10.1053/j.sodo.2010.06.003

    Article  Google Scholar 

  5. D.S. Levi, N. Kusnezov, G.P. Carman, Smart materials applications for pediatric cardiovascular devices. Pediatr. Res. 63, 552–558 (2008). https://doi.org/10.1203/PDR.0b013e31816a9d18

    Article  Google Scholar 

  6. A.T. Tung, B.H. Park, A. Koolwal, B. Nelson, G. Niemeyer, D. Liang, Design and fabrication of tubular shape memory alloy actuators for active catheters. First. IEEE/RAS-EMBS. Int. Conf. Biomed. Robot. Biomechatron. (2006). https://doi.org/10.1109/BIOROB.2006.1639184

    Article  Google Scholar 

  7. K. Otsuka, C.M. Wayman, Shape memory materials (Cambridge University Press, Cambridge, 1999), pp. 27–48

    Google Scholar 

  8. X. Wang, F. Liu, Y. Song, Enhanced corrosion resistance and in vitro bioactivity of NiTi alloys modified with hydroxyapatite-containing Al2O3 coatings. Surf. Coat. Technol. 344, 288–294 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.034

    Article  Google Scholar 

  9. M. Jamesh, S. Kumar, T.S.N. Sankara Narayanan, Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J. Coat. Technol. Res. 9, 495–502 (2012). https://doi.org/10.1007/s11998-011-9382-6

    Article  Google Scholar 

  10. C.F. Dunne, K. Roche, B. Twomey, K.T. Stanton, Deposition of hydroxyapatite onto shape memory NiTi wire. Mater. Lett. 176, 185–188 (2016). https://doi.org/10.1016/j.matlet.2016.04.074

    Article  Google Scholar 

  11. Q. Bao, K. Zhao, J. Liu, Characterization of wollastonite coatings prepared by sol–gel on Ti substrate. J. Coat. Technol. Res. 9, 189–193 (2012). https://doi.org/10.1007/s11998-009-9236-7

    Article  Google Scholar 

  12. A. Carradò, Nano-crystalline pulsed laser deposition hydroxyapatite thin films on Ti substrate for biomedical application. J. Coat. Technol. Res. 8, 749 (2011). https://doi.org/10.1007/s11998-011-9355-9

    Article  Google Scholar 

  13. J. Choi, D. Bogdanski, M. Köller, S.A. Esenwein, D. Müller, G. Muhr, M. Epple, Calcium phosphate coating of nickel–titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials 24, 3689–3696 (2003). https://doi.org/10.1016/S0142-9612(03)00241-2

    Article  Google Scholar 

  14. B. Aksakal, C. Hanyaloglu, Bioceramic dip-coating on Ti–6Al–4V and 316L SS implant materials. J. Mater. Sci. Mater Med. 19, 2097–2104 (2008). https://doi.org/10.1007/s10856-007-3304-2

    Article  Google Scholar 

  15. X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Reports. 47, 49–121 (2004). https://doi.org/10.1016/j.mser.2004.11.001

    Article  Google Scholar 

  16. W. Qiang, C. Zhen-duo, Y. Xian-jin, S. Jie, Improving the bioactivity of NiTi shape memory alloy by heat and alkali treatment. Appl. Surf. Sci. 255, 462–465 (2008). https://doi.org/10.1016/j.apsusc.2008.06.069

    Article  ADS  Google Scholar 

  17. H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J. Mater. Sci. Mater. Med. 8, 341–347 (1997). https://doi.org/10.1023/a:1018524731409

    Article  Google Scholar 

  18. P. Li, I. Kangasniemi, K. Groot, T. Kokubo, Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J. Am. Ceram. Soc. 5, 1307–1312 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb05407.x

    Article  Google Scholar 

  19. L. Jonášová, F.A. Müller, A. Helebrant, J. Strnad, P. Greil, Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer. Biomaterials 23, 3095–3101 (2002). https://doi.org/10.1016/S0142-9612(02)00043-1

    Article  Google Scholar 

  20. H. Takadama, H.M. Kim, T. Kokubo, T. Nakamura, TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J. Biomed. Mater. Res. 57, 441–448 (2001). https://doi.org/10.1002/1097-4636(20011205)57:3<441:aid-jbm1187>3.0.co;2-b

    Article  Google Scholar 

  21. W. Chrzanowski, E.A. Abou-Neel, D.A. Armitage, J.C. Knowles, Surface preparation of bioactive NiTi alloy using alkali, thermal-treatments and spark oxidation. J. Mater. Sci: Mater. Med. 19, 1553–1557 (2008). https://doi.org/10.1007/s10856-008-3374-9

    Article  Google Scholar 

  22. W. Chrzanowski, E.A. Abou-Neel, D.A. Armitage, K. Lee, W. Walke, J.C. Knowles, Nanomechanical evaluation of nickel-titanium surface properties after alkali and electrochemical treatments. J. R. Soc. Interface 5, 1009–1022 (2008). https://doi.org/10.1098/rsif.2007.1313

    Article  Google Scholar 

  23. M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, J.H. Evans, Electrophoretic deposition of hydroxyapatite coatings on metal substrates: a nanoparticulate dual-coating approach. J. Sol-Gel. Sci. Technol. 21, 39–48 (2001). https://doi.org/10.1023/A:1011201414651

    Article  Google Scholar 

  24. L.A. Sena, M.C. Andrade, A.M. Rossi, G.A. Soares, Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. J. Biomed. Mater. Res. 60, 1–7 (2002). https://doi.org/10.1002/jbm.10003

    Article  Google Scholar 

  25. International organization for standardization (ISO) 109993–5:2009, Biological evaluation of medical devices - Part 5: tests for in vitro cytotoxicity

  26. M. Sandhyarani, T. Prasadrao, N. Rameshbabu, Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium. Appl. Surf. Sci. 317, 198–209 (2014). https://doi.org/10.1016/j.apsusc.2014.08.081

    Article  ADS  Google Scholar 

  27. Y. Han, D. Chen, J. Sun, Y. Zhang, K. Xu, UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta. Biomater. 4, 1518–1529 (2008). https://doi.org/10.1016/j.actbio.2008.03.005

    Article  Google Scholar 

  28. D. Aronov, G. Rosenman, Wettability study of modified silicon dioxide surface using environmental scanning electron microscopy. J. Appl. Phys. 101, 084901–084901 (2007). https://doi.org/10.1063/1.2721945

    Article  ADS  Google Scholar 

  29. S. Kapila, R. Sachdeva, Mechanical properties and clinical applications of orthodontic wires. Am. J. Orthod. Detofac. Orthop. 96, 100–109 (1989). https://doi.org/10.1016/0889-5406(89)90251-5

    Article  Google Scholar 

  30. Z. Laster, A.D. MacBean, P.R. Ayliffe, L.C. Newlands, Fixation of a frontozygomatic fracture with a shape-memory staple. Br. J. Oral Maxillofac. Surg. 39, 324–325 (2001). https://doi.org/10.1054/bjom.2001.0633

    Article  Google Scholar 

  31. M.F. Chen, X.J. Yang, R.X. Hu, Z.D. Cui, H.C. Man, Bioactive NiTi shape memory alloy used as bone bonding implants. Mater. Sci. Eng. C. 24, 497–502 (2004). https://doi.org/10.1016/j.msec.2003.11.001

    Article  Google Scholar 

  32. T.M. Sridhar, U. Kamachi Mudali, M. Subbaiyan, Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steel. Corros. Sci. 45, 2337–2359 (2003). https://doi.org/10.1016/S0010-938X(03)00063-5

    Article  Google Scholar 

  33. S.A. Shabalovskaya, J. Anderegg, F. Laab, P.A. Thiel, G. Rondelli, Surface conditions of Nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment. J. Biomed. Mater. Res. B Appl. Biomater. 65, 193–203 (2003). https://doi.org/10.1002/jbm.b.10001

    Article  Google Scholar 

  34. S. Wu, X. Liu, Y.L. Chan et al., Nickel release behavior, cytocompatibility, and superelasticity of oxidized porous single-phase NiTi. J. Biomed. Mater. Res. A. 81, 948–955 (2007). https://doi.org/10.1002/jbm.a.31115

    Article  Google Scholar 

  35. H.H. Huang, Y.H. Chiu, T.H. Lee, S.C. Wu, H.W. Yang, K.H. Su, C.C. Hsu, Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 24, 3585–3592 (2003). https://doi.org/10.1016/S0142-9612(03)00188-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ozyegin University for the financial support throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Yapici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simsek, G.M., Ipekoglu, M. & Yapici, G.G. Evaluation of NaOH pre-treatment on the corrosion behavior and surface characteristics of hydroxyapatite coated NiTi alloy. Appl. Phys. A 126, 659 (2020). https://doi.org/10.1007/s00339-020-03847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03847-1

Keywords

Navigation