Skip to main content
Log in

An integrated GaInP/Si dual-junction solar cell with enhanced efficiency using TOPCon technology

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The main focus here is to electrically connect lattice mismatched GaInP/Si sub-cells and enhance the overall cell performance of the designed dual-junction solar cell. This dual-junction solar cell is designed with carrier-selective tunnel oxide passivated contact (CS-TOPCon) technology. The lattice mismatch between the sub-cells is reduced by inserting buffer layer in the top cell. This buffer layer helps in better photogeneration and carrier transport and increases short-circuit current. The presence of electric field in the tunnel oxide region and linear behavior of the pinholes (micro-resistors) is extensively studied. GaInP and Si cells are individually simulated using Silvaco ATLAS TCAD simulation tool. The CS-TOPCon technology at the passivated bottom cell reduces the recombination and increases the external open-circuit voltage. The integrated GaInP/Si dual-junction solar cell results in the efficiency of 28.14% and the application of CS-TOPCon technology enhances the efficiency up to 35.32% using ASTM-certified globally accepted AM1.5G spectrum. The obtained result of electrically connected DJSC design is compared with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig.10
Fig. 11.

Similar content being viewed by others

References

  1. Z. Qiu, C. Ke, A.G. Aberle, R. Stangl, Efficiency potential of rear heterojunction stripe contacts. Applied in hybrid silicon wafer solar cells. IEEE J. Photovolt. 5, 1053–1061 (2015)

    Article  Google Scholar 

  2. S. Zhang, X. Pan, H. Jiao, W. Deng, J. Xu, Y. Chen, P.P. Altermatt, Z. Feng, P.J. Verlinden, 335-W world-record p-type monocrystalline module with 20.6% efficient PERC solar cells. IEEE J. Photovolt. 6, 145–152 (2016)

    Article  Google Scholar 

  3. A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, M.A. Green, 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989)

    Article  ADS  Google Scholar 

  4. F. Schindler, J. Schon, B. Michl, S. Riepe, P. Krenckel, J. Benick, F. Feldmann, M. Hermle, S.W. Glunz, W. Warta, M.C. Schubert, High efficiency multicrystalline silicon solar cells: potential of n-type doping. IEEE J. Photovolt. 5, 1571–1579 (2015)

    Article  Google Scholar 

  5. J. Benick, A. Richter, R. Muller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M.C. Schubert, M. Hermle, A.W. Bett, S.W. Glunz, High-efficiency n-type HP mc silicon solar cells. IEEE J. Photovolt. 7, 1171–1175 (2017)

    Article  Google Scholar 

  6. Z. Zhang, Y. Zeng, C.-S. Jiang, Y. Huang, M. Liao, H. Tong, M. Al-Jassim, P. Gao, C. Shou, X. Zhou, B. Yan, J. Ye, Carrier transport through the ultrathin silicon-oxide layer in tunnel oxide passivated contact (TOPCon) c-Si solar cells. Sol. Energy Mater. Sol. Cells 187, 113–122 (2018)

    Article  Google Scholar 

  7. Y. Zeng, H. Tong, C. Quan, L. Cai, Z. Yang, K. Chen, Z. Yuan, C.-H. Wu, B. Yan, P. Gao, J. Ye, Theoretical exploration towards high-efficiency tunnel oxide passivated carrier-selective contacts (TOPCon) solar cells. Sol. Energy 155, 654–660 (2017)

    Article  ADS  Google Scholar 

  8. R.A. Vijayan, S. Essig, S.D. Wolf, B.G. Ramanathan, P. Loper, C. Ballif, M. Varadharajaperumal, Hole-collection mechanism in passivating metal-oxide contacts on Si solar cells: insights from numerical simulations. IEEE J. Photovolt. 8, 473–482 (2018)

    Article  Google Scholar 

  9. H. Steinkemper, F. Feldmann, M. Bivour, M. Hermle, Numerical simulation of carrier-selective electron contacts featuring tunnel oxides. IEEE J. Photovolt. 5, 1348–1356 (2015)

    Article  Google Scholar 

  10. S. Mitra, H. Ghosh, H. Saha, K. Ghosh, Recombination analysis of tunnel oxide passivated contact solar cells. IEEE Trans. Electron Devices 66, 1368–1376 (2019)

    Article  ADS  Google Scholar 

  11. A. Fell, F. Feldmann, C. Messmer, M. Bivour, M.C. Schubert, S.W. Glunz, Adaption of basic metal–insulator–semiconductor (MIS) theory for passivating contacts within numerical solar cell modeling. IEEE J. Photovolt. 8, 1546–1552 (2018)

    Article  Google Scholar 

  12. A. Tyagi, K. Ghosh, A. Kottantharayil, S. Lodha, Performance evaluation of passivated silicon carrier-selective contact solar cell. IEEE Trans. Electron Devices 65, 176–183 (2018)

    Article  ADS  Google Scholar 

  13. A. Tyagi, K. Ghosh, A. Kottantharayil, S. Lodha, An analytical model for the electrical characteristics of passivated carrier-selective contact (CSC) solar cell. IEEE Trans. Electron Devices 66, 1377–1385 (2019)

    Article  ADS  Google Scholar 

  14. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  ADS  Google Scholar 

  15. T. Tiedje, E. Yablonovitch, G.D. Cody, B.G. Brooks, Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31, 711–716 (1984)

    Article  ADS  Google Scholar 

  16. A. Benlekhdim, A. Cheknane, L. Sfaxi, H.S. Hilal, Efficiency improvement of single-junction InGaP solar cells by advanced photovoltaic device modeling. Optik 163, 8–15 (2018)

    Article  ADS  Google Scholar 

  17. Y.-A. Chang, Z.-Y. Li, H.-C. Kuo, T.-C. Lu, S.-F. Yang, L.-W. Lai, L.-H. Lai, S.-C. Wang, Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process. Semicond. Sci. Technol. 24, 085007-1-4 (2009)

    ADS  Google Scholar 

  18. J.F. Geisz, M.A. Steiner, I. Gracia, D.J. Friedman, Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl. Phys. Lett. 103, 041118-1-5 (2013)

    Article  ADS  Google Scholar 

  19. T. Takamoto, E. Ikeda, H. Kurita, M. Ohmori, Structural optimization for single junction InGaP solar cells. Sol. Energy Mater. Sol. Cells 35, 25–31 (1994)

    Article  Google Scholar 

  20. M. Verma, G.P. Mishra, Voltage preserved GaInP single junction solar cell using type-A InP multiple quantum well structure with enhanced efficiency. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165113

    Article  Google Scholar 

  21. T. Takamoto, E. Ikeda, H. Kurita, M. Ohmori, Over 30% efficient InGaP/GaAs tandem solar cells. Appl. Phys. Lett. 70, 381–383 (1998)

    Article  ADS  Google Scholar 

  22. S. SahooG, G.P. Mishra, Efficient use of low-bandgap GaAs/GaSb to convert more than 50% of solar radiation into electrical energy: a numerical approach. J. Electron Mater. 48, 560–570 (2019)

    Article  ADS  Google Scholar 

  23. S. Essig, M.A. Steiner, C. Allebe, J.F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, D.L. Young, Realization of GaInP/Si dual-junction solar cells with 29.8% 1-Sun efficiency. IEEE J. Photovolt. 6, 1012–1018 (2016)

    Article  Google Scholar 

  24. S. Essig, S. Ward, M.A. Steiner, D.J. Friedman, J.F. Geisz, P. Stradins, D.L. Young, Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Proc. 77, 464–469 (2015)

    Article  Google Scholar 

  25. I. Almansour, A. Ho-Baillie, S.P. Bremner, M.A. Green, Supercharging silicon solar cell performanceby means of multijunction concept. IEEE J. Photovolt. 5, 968–976 (2015)

    Article  Google Scholar 

  26. K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S.P. Philipps, J. Benick, M. Hermle, M. Schachtner, W. Jager, F. Dimroth, Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding. IEEE J. Photovolt. 3, 1423–1428 (2013)

    Article  Google Scholar 

  27. M. Feifel, J. Ohlmann, J. Benick, M. Hermle, J. Belz, A. Beyer, K. Volz, T. Hannappel, A.W. Bett, D. Lackner, F. Dimroth, Direct growth of III–V/silicon triple-junction solar cells with 19.7% efficiency. IEEE J. Photovolt. 8, 1590–1595 (2018)

    Article  Google Scholar 

  28. T. Soga, Fundamentals of solar cell. Nanostruct. Mater. Sol. Energy. Convers. (2006). https://doi.org/10.1016/B978-044452844-5/50002-0

    Article  Google Scholar 

  29. S. Essig, J. Benick, M. Schachtner, A. Wekkeli, M. Hermle, F. Dimroth, Wafer-bonded GaInP/GaAs//Si solar cells with 30% efficiency under concentrated sunlight. IEEE J. Photovolt. 5, 977–981 (2015)

    Article  Google Scholar 

  30. C.J. Zolper, A.M. Barnett, The effect of dislocations on the open-circuit voltage of gallium arsenide solar cells. IEEE Trans. Electron Devices 37, 478–484 (1990)

    Article  ADS  Google Scholar 

  31. M. Yamaguchi, A. Yamamoto, Y. Ithoh, Effect of dislocations on the efficiency of thin film GaAs solar cells on Si substrates. J. Appl. Phys. 59, 1751–1753 (1986)

    Article  ADS  Google Scholar 

  32. M. Yamaguchi, C. Amano, Y. Ithoh, Numerical analysis for high efficiency GaAs solar cells fabricated on Si Substrate. J. Appl. Phys. 66, 915–919 (1989)

    Article  ADS  Google Scholar 

  33. J.A. Carlin, S.A. Ringel, A. Fitzgerald, M. Bulsara, High-lifetime GaAs on Si using GeSi buffers and its potential for space photovoltaics. Sol. Energy Mater. Sol. Cells 66, 621–630 (2001)

    Article  Google Scholar 

  34. K.N. Yaung, M. Vaisman, J. Lang, M.L. Lee, GaAsP solar cells on GaP/Si with low threading dislocation density. Appl. Phys. Lett. 109, 032107-1-5 (2016)

    Article  ADS  Google Scholar 

  35. J.A. Carlin, S.A. Ringel, A. Fitzgerald, M. Bulsara, High quality GaAs growth by MBE on Si using GeSi buffers and prospects for space photovoltaics. Prog. Photovolt. Res. Appl. 8, 323–332 (2000)

    Article  Google Scholar 

  36. S.A. Ringel, J.A. Carline, C.L. Andre, M.K. Hudait, M. Gonzalez, D.M. Wilt, E.B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E.A. Fitzgerald, C.W. Leitz, Single-junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers. Prog. Photovolt. Res. Appl. Spec. Issue 10, 417–426 (2002)

    Article  Google Scholar 

  37. C.L. Andre, D.M. Wilt, A.J. Pitera, M.L. Lee, E.A. Fitzgerald, S.A. Ringel, Impact of dislocation densities on n+/p and p+/n junction GaAs diodes and solar cells on SiGe virtual substrates. J. Appl. Phys. 98, 014502-1-5 (2005)

    Article  ADS  Google Scholar 

  38. Online document, Available: https://energyprofessionalsymposium.com/?p=6031. Accessed 11 Jan 2018

  39. T.W. Kim, B.R. Albert, L.C. Kimerling, J. Michel, InGaP solar cell on Ge-on-Si virtual substrate for novel solar power conversion. J. Appl. Phys. 123, 085111-1-7 (2018)

    ADS  Google Scholar 

  40. T. Soga, K. Baskar, T. Kato, T. Jimbo, M. Umeno, MOCVD growth of high efficiency current-matched A1GaAs/Si tandem solar cell. J. Cryst. Growth 174, 579–584 (1997)

    Article  ADS  Google Scholar 

  41. S.A. Hadi, E.A. Fitzgerald, S. Griffiths, A. Nayfeh, III–V/Si dual junction solar cell at scale: manufacturing cost estimates for step-cell based technology. J. Renew. Sustain. Energy 10, 015905116 (2018)

    Google Scholar 

  42. Silvaco Inc., Silvaco ATLAS user’s manual (2016).

  43. R. Saive, H. Emmer, C.T. Chen, C. Zhang, C. Honsberg, H. Atwater, Study of the interface in a GaP/Si heterojunction solar cell. IEEE J. Photovolt. 8, 1568–1576 (2018)

    Article  Google Scholar 

  44. F. Feldmann, G. Nogay, J.-I. Polzin, B. Steinhauser, A. Richter, A. Fell, C. Schmiga, M. Hermle, S.W. Glunz, A study on the charge carrier transport of passivating contacts. IEEE J. Photovolt. 8, 1503–1509 (2018)

    Article  Google Scholar 

  45. S. Fan, D. Jung, Y. Sun, B.D. Li, D. Martin-Martin, M.L. Lee, 16.8%-Efficient n+/p GaAs solar cells on Si with high short-circuit current density. IEEE J. Photovolt. 9, 660–665 (2019)

    Article  Google Scholar 

  46. M.A. Green, F.D. King, J. Shewchun, Minority carrier MIS tunnel diodes and their application to electron and photovoltaic energy conversion-I theory. Solid State Electron. 17, 551–561 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guru Prasad Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Mishra, G.P. An integrated GaInP/Si dual-junction solar cell with enhanced efficiency using TOPCon technology. Appl. Phys. A 126, 661 (2020). https://doi.org/10.1007/s00339-020-03840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03840-8

Keywords

Navigation