Skip to main content
Log in

Optically tunable charge carrier injection in monolayer MoS2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on excitation laser power-dependent Raman and photoluminescence (PL) measurements on gold nanoparticles–monolayer MoS2 hybrid nanostructures. Excitation of localized surface plasmon resonances in gold nanoparticles and their subsequent non-radiative relaxation inject charge carriers (electrons) into the adjacent monolayer MoS2. Due to the non-centrosymmetric nature of monolayer MoS2, the localized electron doping induces lattice compression via inverse piezoelectric response. The resultant lattice distortion manifests as a shift as well as broadening of \({A}_{1g}(\Gamma )\) and \({E}_{2g}^{1}\left(\Gamma \right)\) MoS2 Raman modes. A splitting of \({E}_{2g}^{1}\left(\Gamma \right)\) mode is also observed. The PL spectra reveal power-dependent enhancement of trion feature, which again is a signature of an increasing electron doping. The observed effects are confirmed to be doping related as they are absent in monolayer MoS2 without gold nanoparticles. Our observations reveal that charge carrier injection is effectively controlled by varying the excitation laser power, which may aid in optically tuning physical response of MoS2 hybrid nanostructures and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. No custom code has been used in this work.

References

  1. G.H. Han, D.L. Duong, D.H. Keum, S.J. Yun, Y.H. van der Lee, Waals metallic transition metal dichalcogenides. Chem. Rev. 118, 6297–6336 (2018)

    Article  Google Scholar 

  2. C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional materials. Chem. Rev. 117, 6225–6331 (2017)

    Article  Google Scholar 

  3. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  4. M.M. Ugeda, A.J. Bradley, S.-F. Shi, F.H. da Jornada, Y. Zhang, D.Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S.G. Louie, M.F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014)

    Article  ADS  Google Scholar 

  5. K.F. Mak, J. Shan, photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016)

    Article  ADS  Google Scholar 

  6. L. Muscuso, S. Cravanzola, F. Cesano, D. Scarano, A. Zecchina, Optical, vibrational and structural properties of mos2 nanoparticles obtained by exfoliation and fragmentation via ultrasound cavitation in isopropyl alcohol. J. Phys. Chem. C 119, 3791–3801 (2015)

    Article  Google Scholar 

  7. V. Mlinar, electronic and optical properties of nanostructured MoS2 materials: influence of reduced spatial dimensions and edge effects. Phys. Chem. Chem. Phys. 19, 15891–15902 (2017)

    Article  Google Scholar 

  8. C.N.R. Rao, U. Maitra, U.V. Waghmare, Extraordinary attributes of 2-dimensional MoS2 nanosheets. Phys. Chem. Chem. Phys. 19, 15891–15902 (2017)

    Article  Google Scholar 

  9. W.S. Yun, J.D. Lee, Strain-induced magnetism in single layer MoS2: origin and manipulation. J. Phys. Chem. C 119, 2822–2827 (2015)

    Article  Google Scholar 

  10. A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. van der Zant, G.A. Steele, Local strain engineering in atomically thin MoS2. Nano Lett. 13(11), 5361–5366 (2013)

    Article  ADS  Google Scholar 

  11. S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011)

    Article  Google Scholar 

  12. A. Singh, G. Sharma, B.P. Singh, P. Vasa, Charge induced lattice compression in monolayer MoS2. J. Phys. Chem. C 123, 17943–17950 (2019)

    Article  Google Scholar 

  13. G. Sharma, A. Singh, R. Sharma, B.P. Singh, P. Vasa, Strain and plasmonic field induced modifications of material excitation response in monolayer MoS2. J. Appl. Phys. 125, 063101 (2019)

    Article  ADS  Google Scholar 

  14. P. Vasa, Exciton-surface plasmon polariton interactions. Adv. Phys-X 5, 1749884 (2020)

    Google Scholar 

  15. P. Vasa, C. Lienau, Strong light-matter interaction in quantum emitter/metal hybrid nanostructures. ACS Photonics 5, 2–23 (2017)

    Article  Google Scholar 

  16. F. Liu, B. Song, G. Su, O. Liang, P. Zhan, H. Wang, W. Wu, Y. Xie, Z. Wang, Sculpting extreme electromagnetic field enhancement in free space for molecule sensing. Small 14, 1801146 (2018)

    Article  Google Scholar 

  17. B. Gerislioglu, A. Ahmadivand, Theoretical Study of photoluminescence spectroscopy of strong exciton-polariton coupling in dielectric nanodisks with anapole states. Mater. Today Chemistry 16, 100254 (2020)

    Article  Google Scholar 

  18. J.-H. Zhong, J. Vogeldang, J.-M. Yi, D. Wang, L. Wittenbecher, S. Mikaelsson, A. Korte, A. Chimeh, C.L. Arnold, P. Schaaf, E. Runge, A. L’Huillier, A. Mikkelsen, C. Lienau, Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure. Nat. Commun. 11, 1464 (2020)

    Article  ADS  Google Scholar 

  19. X. Yang, H. Yu, X. Guo, Q. Ding, T. Pulllerits, R. Wang, G. Zhang, W. Liang, M. Sun, Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater. Today Energy 5, 72–78 (2017)

    Article  Google Scholar 

  20. M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)

    Article  ADS  Google Scholar 

  21. Z. Fang, Y. Wang, Z. Liu, A. Schlather, P.M. Ajayan, F.H. Koppens, P. Nordlander, N.J. Halas, Plasmon-induced doping of graphene. ACS Nano 6, 10222–10228 (2012)

    Article  Google Scholar 

  22. Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N.J. Halas, P. Nordlander, P.M. Ajayan, J. Lou, Z. Fang, Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014)

    Article  Google Scholar 

  23. K.A.N. Duerloo, M.T. Ong, E.J. Reed, intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012)

    Article  Google Scholar 

  24. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014)

    Article  ADS  Google Scholar 

  25. H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z.J. Wong, Z. Ye, Y. Ye, X. Yin, X. Zhang, Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015)

    Article  ADS  Google Scholar 

  26. C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R.S. Ruoff, R.M. Wallace, K. Cho, X. Xu, Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano 7, 11350–11357 (2013)

    Article  Google Scholar 

  27. K. Zhou, J. Song, L. Lu, Z. Luo, Q. Cheng, Plasmon-enhanced broadband absorption of MoS 2-based structure using Au nanoparticles. Opt. Express 27, 2305–2316 (2019)

    Article  ADS  Google Scholar 

  28. H. Xu, Enhanced light-matter interaction of a MoS 2 monolayer with a gold mirror layer. RSC Adv. 7, 23109–23113 (2017)

    Article  Google Scholar 

  29. P. Vasa, R. Sharma, M. Singh, A.K. Dharmadhikari, J.A. Dharmadhikari, D. Mathur, Generation of stable colloidal gold nanoparticles by ultrashort laser-induced melting and fragmentation. Mater. Res. Express 1, 035028 (2014)

    Article  ADS  Google Scholar 

  30. P.K. Mohapatra, S. Deb, B.P. Singh, P. Vasa, S. Dhar, Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties. Appl. Phys. Lett. 108, 042101 (2016)

    Article  ADS  Google Scholar 

  31. J.L. Verble, T.J. Wieting, Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 25, 362–365 (1970)

    Article  ADS  Google Scholar 

  32. Jiménez Sandoval. S.; Yang, D.; Frindt, R. F.; Irwin, J. C. Raman Study and Lattice Dynamics of Single Molecular Layers of MoS2. Phys. Rev. B 1991, 44, 3955–3962.

  33. H.J. Conley, B. Wang, J.I. Ziegler, H.R.F. Jr, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013)

  34. B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 161403 (2012)

    Article  ADS  Google Scholar 

  35. W.H. Chae, J.D. Cain, E.D. Hanson, A.A. Murthy, V.P. Dravid, Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 111, 143106 (2017)

    Article  ADS  Google Scholar 

  36. D. Lloyd, X. Liu, J.W. Christopher, L. Cantley, A. Wadehra, B.L. Kim, B.B. Goldberg, A.K. Swan, J.S. Bunch, Band gap engineering with ultra-large biaxial strains in suspended monolayer MoS2. Nano Lett. 16, 5836–5841 (2016)

    Article  ADS  Google Scholar 

  37. A. Buscema, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, The effect of the substrate on the raman and photoluminescence emission of single-layer MoS2. Nano Res. 7, 561–571 (2014)

    Article  Google Scholar 

  38. P. Vasa, C. Lienau, An unusual marriage: coupling molecular excitons to surface plasmon polaritons in metal nanostructures. Angew. Chem. Int. Ed. 49, 2476–2477 (2010)

    Article  Google Scholar 

  39. Y. Zeng, X. Li, W. Chen, J. Liao, J. Lou, Q. Chen, Highly enhanced photoluminescence of monolayer MoS2 with self-assembled Au nanoparticle arrays. Adv. Mater. Interfaces 4, 1700739 (2017)

    Article  Google Scholar 

  40. H. Sun, J. Chao, X. Zuo, S. Su, X. Liu, L. Yuwen, C. Fan, L. Wang, Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid dopamine and uric acid. RSC Adv 4, 27625–27629 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Sophisticated Analytical Instrument Facility (SAIF) and Centre for Research in Nanotechnology and Science (CRNTS) at IIT Bombay for providing synthesis and characterization facilities. They also acknowledge financial support from SERB, DST and Dhananjay Joshi Endowment Fund (IIT Bombay) to PV. They are grateful to other group members for their help.

Funding

This work was supported by Science and Engineering Board (SERB) and Department of Science and Technology (DST) under the project grant nos. CRG/2018/000157 and DST/TMD (EWO)/IC5-2018/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parinda Vasa.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Rao, S.M., Singh, B.P. et al. Optically tunable charge carrier injection in monolayer MoS2. Appl. Phys. A 126, 663 (2020). https://doi.org/10.1007/s00339-020-03839-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03839-1

Keywords

Navigation