Skip to main content
Log in

Abrupt initiation of material removal by focusing continuous-wave fiber laser on glass

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 05 December 2020

This article has been updated

Abstract

Glass with high-aspect-ratio micro holes is used in system-in-package technologies and microfluidic devices. In this study, to investigate the feasibility of the process, we used a continuous-wave (CW) fiber laser to drill a hole in glass without an absorbent layer. To understand the process of removal, we conducted observations over a wide range of time scales from 1 kfps to 1 Mfps. A CW laser beam with a wavelength of 1070 nm was focused on the front surface of an aluminosilicate glass sample. The real-time observations revealed that the initiation of the material removal occurred tens or hundreds of milliseconds after the exposure of the laser beam. Once the removal of the material started, the depth of the hole rapidly increased at a rate of 3–4 \(\mu \)m/\(\mu \)s. Although the time required for the initiation of the material removal varied with the laser power, the rate at which the depth of the hole increased was approximately constant. The model of the transient absorption and thermal diffusion showed that the abrupt material removal was caused by the dependence of absorption coefficient on temperature. The threshold temperature was calculated as 900–1200 \(^\circ \)C. In this study, we demonstrated that a CW fiber laser can process high-aspect-ratio micro holes in glass without using an absorbent layer through precisely controlled exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 05 December 2020

    In the original publication of the article, Fig. 5 was incorrect. The correct Fig. 5 appears as below.

References

  1. L. Brusberg, H. Schroder, M. Topper, H. Reichl, in 2009 11th Electronics Packaging Technology Conference, (2009), pp. 930–935. https://doi.org/10.1109/EPTC.2009.5416411

  2. Y. Bellouard, A. Said, M. Dugan, P. Bado, Opt. Exp. 12(10), 2120 (2004)

    Article  ADS  Google Scholar 

  3. T. Ono, T. Matsumura, J. Mater. Process. Technol. 202(1), 61 (2008). https://doi.org/10.1016/j.jmatprotec.2007.08.068. http://www.sciencedirect.com/science/article/pii/S0924013607008497

  4. X. Li, T. Abe, Y. Liu, M. Esashi, J. Microelectromech. Syst. 11(6), 625 (2002). https://doi.org/10.1109/JMEMS.2002.805211

    Article  Google Scholar 

  5. Z.P. Zheng, W.H. Cheng, F.Y. Huang, B.H. Yan, J. Micromech. Microeng. 17(5), 960 (2007). https://doi.org/10.1088/0960-1317/17/5/016

    Article  ADS  Google Scholar 

  6. Z. Xin, S.Y. C, Appl. Phys. A 104(2), 713 (2011)

  7. S. Karimelahi, L. Abolghasemi, P.R. Herman, Appl. Phys. A 114(1), 91 (2014)

    Article  ADS  Google Scholar 

  8. Y. Ito, R. Shinomoto, K. Nagato, A. Otsu, K. Tatsukoshi, Y. Fukasawa, T. Kizaki, N. Sugita, M. Mitsuishi, Appl. Phys. A 124(2), 181 (2018)

    Article  ADS  Google Scholar 

  9. W.K. Yung, J. Liu, H. Man, T. Yue, J. Mater. Process. Technol. 101(1), 306 (2000). https://doi.org/10.1016/S0924-0136(00)00467-2. http://www.sciencedirect.com/science/article/pii/S0924013600004672

  10. R. Nakamura, T. Katsura, S. Fujikawa, T. Magara, T. Inagawa, Y. Aono, H. Tokura, in Proceedings of JSPE Semestrial Meeting, Volume 2013S (JSPE, 2013), pp. 587–588. (In Japanese)

  11. M. Mitsuishi, N. Sugita, I. Kono, S. Warisawa, CIRP Ann 57(1), 217 (2008). https://doi.org/10.1016/j.cirp.2008.03.006. http://www.sciencedirect.com/science/article/pii/S0007850608000085

  12. H. Hidai, N. Saito, S. Matsusaka, A. Chiba, N. Morita, Appl. Phys. A 122(4), 277 (2016)

    Article  ADS  Google Scholar 

  13. H. Hidai, M. Yoshioka, K. Hiromatsu, H. Tokura, Appl. Phys. A 96(4), 869 (2009)

    Article  ADS  Google Scholar 

  14. M. von Allmen, J. Appl. Phys. 47(12), 5460 (1976). https://doi.org/10.1063/1.322578

    Article  ADS  Google Scholar 

  15. J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, J. Appl. Phys. 36(1), 3 (1965). https://doi.org/10.1063/1.1713919

    Article  ADS  Google Scholar 

  16. C. Jacinto, D. Messias, A. Andrade, S. Lima, M. Baesso, T. Catunda, J. Non-Crystal. Solids 352(32), 3582 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.04.025. http://www.sciencedirect.com/science/article/pii/S0022309306007277. Glasses and Related Materials 7

  17. R.M. Waxler, G.W. Cleek, J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 77 A(6), 755 (1973). https://doi.org/10.6028/jres.077A.046. http://www.pmc/articles/PMC6728498/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728498/

  18. S.I. Todoroki, Fiber fuse propagation behavior (Citeseer, 2012)

  19. D. Hand, P.S.J. Russell, Opt. Lett. 13(9), 767 (1988)

    Article  ADS  Google Scholar 

  20. R. Kashyap, K.J. Blow, Electron. Lett. 24(1), 47 (1988). https://doi.org/10.1049/el:19880032

    Article  ADS  Google Scholar 

  21. S. Itoh, H. Hidai, H. Tokura, Appl. Phys. A 112(4), 1043 (2013)

    Article  ADS  Google Scholar 

  22. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, IEEE Photon. Technol. Lett. 16(4), 1008 (2004). https://doi.org/10.1109/LPT.2004.824633

    Article  ADS  Google Scholar 

  23. A. Vogel, B.A. Rockwell, Roles of tunneling, multiphoton ionization, and cascade ionization for femtosecond optical breakdown in aqueous media, Tech. rep. (Lubeck Medical Univ (Germany) Medical Laser Center, Lubeck, 2009)

    Google Scholar 

  24. I. Miyamoto, K. Cvecek, M. Schmidt, Opt. Exp. 19(11), 10714 (2011). https://doi.org/10.1364/OE.19.010714. http://www.opticsexpress.org/abstract.cfm?URI=oe-19-11-10714

  25. P.K. Kennedy, IEEE J. Quantum Electron. 31(12), 2241 (1995). https://doi.org/10.1109/3.477753

    Article  ADS  Google Scholar 

  26. V. Batanov, F. Bunkin, A. Prokhorov, V. Fedorov, Sov. Phys. JETP 36, 311 (1973)

    ADS  Google Scholar 

Download references

Acknowledgements

This study was conducted as part of the Social Cooperation Programs of the University of Tokyo “Creation of High-tech Glass,” financially supported by AGC Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reina Yoshizaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshizaki, R., Ito, Y., Miyamoto, N. et al. Abrupt initiation of material removal by focusing continuous-wave fiber laser on glass. Appl. Phys. A 126, 715 (2020). https://doi.org/10.1007/s00339-020-03836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03836-4

Keywords

Navigation