Skip to main content
Log in

Al-doped Li1.21[Mn0.54Ni0.125Co0.125]O2 cathode material with enhanced electrochemical properties for lithium-ion battery

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Layered Li-rich Mn-based oxides are believed to be a good candidate for cathode material in the next generation of lithium-ion batteries. However, they have some disadvantages, such as low initial coulombic efficiency, low rate capacity, and deficient cyclability. To overcome these shortcomings, various approaches, such as elemental doping, have been adopted. In this study, Al-doped Li1.21Mn0.54Ni0.125Co0.125O2 were successfully synthesized using the sol–gel method. Samples were characterized by thermal analysis (TGA/DTA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), surface-area analysis, field emission scanning electron microscopy and transmission electron microscopy (TEM). Measurements of galvanostatic charge discharge and electrochemical impedance spectroscopy were also performed to evaluate the electrochemical performance of the prepared samples. The XRD patterns showed that all the samples with the structure of 0.55Li2MnO3.0.45LiNi0.33Mn0.33Co0.33O2 had a composite material with two individual layered structures that are integrated with each other. By doping Al, the lattice parameters of the samples changed. The first discharge capacity of the Al-doped specimens was lower than that of the pristine sample. In cycling performance results, it is clear that cyclic behavior and capacity stability rate in doped samples have improved compared to the undoped sample, and in the meantime, the sample with 0.05 aluminum doping has shown the best performance. Optimal performance of the doped specimens can be related to lower load transfer resistance and better structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Li, L. Zeng, Y. Wu et al., Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Sci. China Mater. 59, 287–321 (2016)

    Google Scholar 

  2. J. Zhang, A. Yu, Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 60, 823–838 (2015)

    Google Scholar 

  3. L. Song, S. Yang, W. Wei et al., Hierarchical SnO2 nanoflowers as sembled by atomic thickness nano sheets as anode material for lithium ion battery. Sci. Bull. 60, 892–895 (2015)

    Google Scholar 

  4. L. Wang, Z. Hu, K. Zhao et al., Hollow spherical LiNi0.5Mn1.5O4 built from poly hedra with high-rate performance via carbon nanotube modification. Sci. China Mater. 59, 95–103 (2016)

    Google Scholar 

  5. F. Dogan, B.R. Long, J.R. Croy, K.G. Gallagher, H. Iddir, J.T. Russell, M. Balasubramanian, B. Key, Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-Rich Li-ion battery cathodes. Am. Chem. Soc. 137, 2328–2335 (2015)

    Google Scholar 

  6. L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. Power Sources 226, 272–288 (2013)

    ADS  Google Scholar 

  7. X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, Z. Li, A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. Power Sources 251, 38–54 (2014)

    ADS  Google Scholar 

  8. S.-H. Kang, P. Kempgens, S. Greenbaum, A.J. Kropf, K. Amine, M.M. Thackeray, Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J. Mater. Chem. 17, 2069–2077 (2007)

    Google Scholar 

  9. N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, S. Komaba, Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. Am. Chem. Soc. 133, 4404–4419 (2011)

    Google Scholar 

  10. D. Ye, K. Ozawa, B. Wang, D. Hulicova-Jurcakova, J. Zou, C. Sun, L. Wang, Capacity-controllable Li-rich cathode materials for lithium-ion batteries. Nano Energy 6, 92–102 (2014)

    Google Scholar 

  11. M. Wang, M. Luo, Y. Chen, Y. Su, L. Chen, R. Zhang, Electrochemical deintercalation kinetics of 0.5Li2MnO3·0.5LiNi1/3Mn1/3Co1/3O2 studied by EIS and PITT. Alloy Compd 696, 907–913 (2017)

    Google Scholar 

  12. B.W. Xiao, B.Q. Wang, J. Liu, K. Kaliyappan, Q. Sun, Y.L. Liu, G. Dadheech, M.P. Balogh, L. Yang, T.K. Sham, R.Y. Li, M. Cai, X.L. Sun, Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34, 120–130 (2017)

    Google Scholar 

  13. C. Song, W. Feng, W. Su, L. Chen, M. Li, Effect of Drying Time on Electrochemical Properties of Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material. Int. J. Electrochem. Sci. 14, 2372–2382 (2019)

    Google Scholar 

  14. F.H. Zheng, X. Ou, Q.C. Pan, X.H. Xiong, H.C. Yang, M.L. Liu, The effect of composite organic acid (citric acid and tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. J. Power Sources 346, 31 (2017)

    ADS  Google Scholar 

  15. X. Chang, Q. Xu, X. Yuan, C. Lai, H. Liu, Mitigating voltage fade of 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 cathode materials using a mild method for lithium-ion batteries. Int. J. Electrochem. Sci. 12, 10071–10083 (2017)

    Google Scholar 

  16. K. Xie, J. Qian, Y. Zhou, Z. Chen, Y. Lin, F. Chen, Z. Shen, Influences of Gd3+ doping modification on the crystal microstructure and electrochemical performance of Li1.20[Mn0.52Ni0.20Co0.08]O2 as cathode for Lithium-ion batteries. Powder Technol. 339, 838 (2018)

    Google Scholar 

  17. Y. Lu, M. Pang, S. Shi, Q. Ye, Z. Tian, T. Wang, Enhanced Electrochemical Properties of Zr4+-doped Li1.20[Mn0.52Ni0.20Co0.08]O2 Cathode Material for Lithium-ion Battery at Elevated Temperature. Sci. Rep. UK 8, 2981 (2018)

    ADS  Google Scholar 

  18. Z.H. Lu, D.D. MacNeil, J.R. Dahn, Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A200–A203 (2001)

    Google Scholar 

  19. X. Wei, P. Yang, H. Li, S. Wang, Y. Xing, X. Liu, S. Zhang, Synthesis and properties of mesoporous Zn-doped Li1.2Mn0.54Co0.13Ni0.13O2 as cathode materials by a MOFs-assisted solvothermal method. RSC Adv. 7, 35055 (2017)

    Google Scholar 

  20. Y. Xu, Q. Cu, Nb-doped Li1.20[Mn0.54Ni0.13Co0.13]O2 cathode material with enhanced electrochemical properties for lithium-ion battery. Int. J. Electrochem. Sci. 15, 803–815 (2020)

    Google Scholar 

  21. H. Chen, Q. Hun, Z. Huang, Z. He, Z. Wang, H. Guo, X. Li, Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceramics Int. 42, 263–269 (2016)

    Google Scholar 

  22. Y. Suna, Y. Xia, H. Noguchi, The improved physical and electrochemical performance of LiNi0.35Co0.3−xCrxMn0.35O2 cathode materials by the Cr doping for lithium ion batteries. J. Power Sources 159, 1377–1382 (2006)

    ADS  Google Scholar 

  23. X. Feng, Y. Gao, L. Ben, Z. Yang, Z. Wang, L. Chen, Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. J Power Sources 317, 74–80 (2016)

    Google Scholar 

  24. P.K. Nayak, J. Grinblat, E. Levi, M. Levi, B. Markovsky, D. Aurbach, Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Phys. Chem. Chem. Phys. 19, 6142–6152 (2017)

    Google Scholar 

  25. J. Lee, D.A. Kitchaev, D.-H. Kwon, C.-W. Lee, J.K. Papp, Y.-S. Liu, Z. Lun, R.J. Clément, T. Shi, B.D. McCloskey, J. Guo, M. Balasubramanian, G. Ceder, Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018)

    ADS  Google Scholar 

  26. Y. Chen, R. Chen, Z. Tang, L. Wang, Synthesis and characterization of Zn-doped LiCo0.3Ni0.4-xMn0.3ZnxO2 cathode materials for lithium-ion batteries. J. Alloys Compd. 476, 539–542 (2009)

    Google Scholar 

  27. A.Y. Shenouda, H.K. Liu, Studies on electrochemical behavior of zinc-doped LiFePO4 for lithium battery positive electrode. J. Alloys Compd. 477, 498–503 (2009)

    Google Scholar 

  28. A. D'Epifanio, F. Croce, F. Ronci, V. Rossi Albertini, E. Traversa, B. Scrosati, Thermal, electrochemical and structural properties of stabilized LiNiyCo1-y-zMzO2 lithium-ion cathode material prepared by a chemical route. PCCP 3, 4399–4403 (2001)

    ADS  Google Scholar 

  29. S.H. Kang, K. Amine, Comparative study of Li(Ni0.5−xMn0.5−xM2x′)O2 (M′ = Mg, Al, Co, Ni, Ti; x = 0, 0.025) cathode materials for rechargeable lithium batteries. J. Power Sources 119, 150–155 (2003)

    ADS  Google Scholar 

  30. C.J. Jafta, K.I. Ozoemena, M.K. Mathe, W.D. Roos, Synthesis, characterization and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim. Acta 85, 411–422 (2012)

    Google Scholar 

  31. G.T.K. Fey, R.F. Shiu, V. Subramanian, LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol- gel method f or Lithium batteries. J. Power Source 103, 265–272 (2002)

    ADS  Google Scholar 

  32. X. He, J. Wang, L. Wang, J. Li, Nano-crystalline Li1.2Mn0.6Ni0.2O2 prepared via amorphous complex precursor and its electrochemical performances as cathode material for lithium-ion batteries. Materials 9, 661 (2016)

    ADS  Google Scholar 

  33. D.-Q. Liao, C.-Y. Xia, X.-M. Xi, C.-X. Zhou, K.-S. Xiao, X.-Q. Chen, S.-B. Qin, Sol–gel preparation of Li-rich layered cathode material for lithium ion battery with polymer polyacrylic acid+ citric acid chelators. J. Sol–Gel Sci. Technol. 78, 403–410 (2016)

    Google Scholar 

  34. M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S. Hackney, Li2MnO3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. CHEM. 17, 3112–3125 (2007)

    Google Scholar 

  35. J. Du, Z. Shan, K. Zhu, X. Liu, J. Tian, H. Du, Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by doping with molybdenum for Lithium battery. J. Solid State Electrochem. 19, 1037–1044 (2015)

    Google Scholar 

  36. A. Hashem, A. Abdel-Ghany, A. Eid, J. Trottier, K. Zaghib, A. Mauger, C. Julien, Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery. J. Power Sources 196, 8632–8637 (2011)

    ADS  Google Scholar 

  37. T. Ting, Z. Hai-Lang, Synthesis and electrochemical performance of lithium-rich cathode material Li[Li0.2Ni0.15Mn0.55Co0.1-xAlx]O2. J. Electrochim. Acta 191, 263–269 (2016)

    Google Scholar 

  38. D. Aurbach, O. Srur-Lavi, C. Ghanty, M. Dixit, O. Haik, M. Talianker, Y. Grinblat, N. Leifer, R. Lavi, D.T. Major, G. Goobes, E. Zinigrad, E.M. Erickson, M. Kosa, B. Markovsky, J. Lampert, A. Volkov, J.Y. Shin, A. Garsuch, Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics. J. Electrochem. Soc. 162, A1014–A1017 (2015)

    Google Scholar 

  39. J.K. Ngala, A.N. Chernova, M. Ma, M. Mamak, P.Y. Zavalij, M.S. Whittingham, The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. J. Mater. Chem. 14, 214–220 (2004)

    Google Scholar 

  40. G.Y. Kim, Y.J. Park, K.H. Jung, D.J. Yang, J.W. Lee, H.G. Kim, High rate, high capacity ZrO2 coated Li[Li1/6Ni1/6Mn1/2Co1/6]O2 for lithium-ion secondary batteries. J. Appl. Electrochem. 38, 1477–1481 (2008)

    Google Scholar 

  41. C. Pouillerie, L. Croguennec, C. Delmas, The LixNi1-yMgyO2 (y = 0.05, 0.10) system: structural modifications observed upon cycling. Solid State Ion. 132, 15–29 (2000)

    Google Scholar 

  42. C.J. Jafta, K. Raju, M.K. Mathe, N. Manyala, K.I. Ozoemena, Microwave irradiation controls the manganese oxidation states of nanostructured (Li [Li0.2Mn0.52Ni0.13Co0.13Al0.02]O2) layered cathode materials for highperformance lithium ion batteries. J. Electrochem. Soc. 162, A768–A773 (2015)

    Google Scholar 

  43. M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, Li2MnO3-stabilized LiMnO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007)

    Google Scholar 

  44. C.H. Chen, J. Liu, M.E. Stoll, G. Henriksen, D.R. Vissers, K. Amine, Aluminum doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources 218, 278–285 (2004)

    Google Scholar 

  45. J. Zhang, Q. Lu, J. Fang, J. Wang, J. Yang, Y. NuLi, Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl Mater Interfaces 6, 17965–17973 (2014)

    Google Scholar 

  46. D. Wang, X. Zhang, R. Xiao, X. Lu, Y. Li, T. Xu, D. Pan, Y.-S. Hu, Y. Bai, Electrochemical performance of Li-rich Li [Li0.2Mn0.56Ni0.17Co0.07]O2 cathode stabilized by metastable Li2SiO3 surface modification for advanced Li-ion batteries. Electrochim. Acta 265, 244–253 (2018)

    ADS  Google Scholar 

  47. C.X. Cheng, L. Tan, H.W. Liu, X.T. Huang, High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation. Mater. Res. Bull. 46, 2032 (2011)

    Google Scholar 

  48. C. Nithya, V.S. Kumari, S. Gopukumar, Synthesis of high voltage (4.9 V) cycling LiNixCoyMn1−x−yO2 cathode materials for lithium rechargeable batteries. Phys. Chem. Chem. Phys. 13, 6125–6132 (2011)

    Google Scholar 

  49. L. Li, B. Song, Y. Chang, H. Xia, J. Yang, K. Lee, L. Lu, Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J. Power Sources 283, 162–170 (2015)

    ADS  Google Scholar 

  50. T. Horiba, K. Hironaka, T. Matsumura, T. Kai, M. Koseki, Y. Muranaka, Manganese-based lithium batteries for hybrid electric vehicle applications. Power Sources 893, 119 (2003)

    Google Scholar 

  51. J. Cho, B. Park, Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. Power Sources 92, 35 (2001)

    ADS  Google Scholar 

  52. S.H. Na, H.S. Kim, S.I. Moon, The effect of Si doping on the electrochemical characteristics of LiNixMnyCo(1-x-y)O2. Solid State Ion. 176, 313–317 (2005)

    Google Scholar 

  53. Y. Xiang, Z. Sun, J. Li, X. Wu, Z. Liu, L. Xiong, Z. He, B. Long, C. Yang, Z. Yin, Improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries synthesized by the polyvinyl alcohol assisted sol-gel method. Ceram. Int. 43, 2320–2324 (2017)

    Google Scholar 

  54. L. Zhang, H. Wang, L. Wang, H. Fang, X. Li, H. Gao, A. Zhang, Y. Song, High electrochemical performance of lithium-rich Li1.2Mn0.54NixCoyO2 cathode materials for lithium-ion batteries. Mater. Lett. 185, 100–103 (2016)

    Google Scholar 

  55. S.J. Shi, J.P. Tu, Y.Y. Tang, X.Y. Liu, X.Y. Zhao, X.L. Wang, C.D. Gu, Morphology and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials treated in molten salts. J. Power Sources 241, 186–195 (2013)

    ADS  Google Scholar 

  56. J.R. Croy, J.S. Park, F. Dogan, C.S. Johnson, B. Key, M. Balasubramanian, Firstcycle evolution of Local structure in electrochemically activated Li2MnO3. Chem. Mater 26, 7091–7098 (2014)

    Google Scholar 

  57. C.S. Johnson, N. Li, C. Lefief, M.M. Thackeray, Anomalous capacity and cycling stability of xLi2MnO3 (1–x)LiMO2 electrodes (M = Mn, Ni Co) in lithium batteries at 50 C. Electrochem. Commun. 9, 787–795 (2007)

    Google Scholar 

  58. W.H. Zhang, W. He, F. Pei, W.F. Yuan, R.J. Mao, X.P. Ai, H.X. Yang, Y.L. Cao, Improved electrochemical properties of Al3+-doped 0.5Li2MnO3–0.5LiCo1/3Ni1/3Mn1/3O2 cathode for lithium ion batteries. J. Inorg. Mater. 28, 1261–1264 (2013)

    Google Scholar 

  59. Z. He, Z. Wang, H. Chen, Z. Huang, X. Li, H. Guo, R. Wang, Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J. Power Sources 299, 334–341 (2015)

    ADS  Google Scholar 

  60. C. Lu, S. Yang, H. Wu, Y. Zhang, X. Yang, T. Liang, Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping. Electrochim. Acta 209, 448–455 (2016)

    Google Scholar 

  61. C. Chen, J. Liu, K. Amine, Symmetric cell approach and impedance spectroscopy of high-power lithium-ion batteries. J. Power Sources 96, 321–328 (2001)

    ADS  Google Scholar 

  62. A.R. Madram, R. Daneshtalab, M.R. Sovizi, Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO4/C cathode material for lithium ion batteries. RSC Advances 6, 101477–101484 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Rozati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etefagh, R., Rozati, S.M. & Arabi, H. Al-doped Li1.21[Mn0.54Ni0.125Co0.125]O2 cathode material with enhanced electrochemical properties for lithium-ion battery. Appl. Phys. A 126, 814 (2020). https://doi.org/10.1007/s00339-020-03832-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03832-8

Keywords

Navigation