Skip to main content
Log in

Performance of 9.0 W light-emitting diode on various layers of magnesium oxide thin film thermal interface material

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

MgO thin films were spin coated on aluminum (Al) substrate and used between LED package and heat sink as thin-film heat spreader. Crystallographic studies showed the presence of (111), (200) and (220) orientations related to MgO phases. From the XRD analysis, 10-layers of MgO showed a favorable film thickness (424 nm), crystal size (11.6 nm), microstrain (0.4860 nm) and dislocation density (0.0078 lines/m2). Similarly, low surface roughness (14.6 nm) and depth of peak–valley (71.6 nm) were recorded from 10-layers MgO thin film using Atomic Force Microscopy (AFM) analysis. Relative thermal conductivity of 22.93 W/mK was recorded from the 10-layers MgO film. High value of the difference in total thermal resistance (ΔRth-tot = 3.01 K/W) and rise in junction temperature (ΔTJ = 18.92 °C) were recorded along with good thermal impedance (35 °C) from the 10-layers MgO thin film measured at 700 mA using thermal transient analysis. Overall, MgO thin film coated Al substrates showed an improved performance for the tested LED and, therefore, can be considered as an alternative thermal substrate for LED thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.Q. Lim, S. Shanmugan, M. Devarajan, Influence of annealed Cu–Al2O3 thin film on the performance of high power LED: thermal and optical analysis. Opt. Quantum Electron. 48(166), 1–14 (2016)

    Google Scholar 

  2. P. Anithambigai, S. Shanmugan, D. Mutharasu et al., Study on thermal performance of high power LED employing aluminum filled epoxy composite as thermal interface material. Microelectron. J. 45, 1726–1733 (2014)

    Article  Google Scholar 

  3. N.J. Aida binti Jamaludin, S. Subramani, Thermal performance of LED fixed on CVD processed ZnO thin film on Al substrates at various O2 gas flow rates. AIMS Mater. Sci. 5(2), 246–256 (2019)

    Article  Google Scholar 

  4. A.M. EzhilRaj, L.C. Nehru, M. Jayachandran et al., Spray pyrolysis deposition and characterization of highly (100) oriented magnesium oxide thin films. Cryst. Res. Technol. 42(9), 867–875 (2019)

    Google Scholar 

  5. T.C. Evans, E. Gavrilovich, R. C. Mihai et al., Patent application publication (10). Pub. No.: US 2006/0222585 A1, 12 (2014)

  6. H. Michael Bunyan, M. de Sorgo, M. CheImsford et al., Conformal thermal interface Material for electronic components. Patent Application Publication. Pub. No 6,054,198A (2000)

  7. S. Wang, Y. Cheng, R. Wang et al., Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Appl. Mater. Interfaces 6, 6481–6486 (2014)

    Article  Google Scholar 

  8. Z. Ong, S. Shanmugan, D. Mutharasu, Thermal performance of high power LED on boron doped aluminium nitride thin film coated copper substrates. J. Sci. Res. Rep. 5(2), 109–119 (2015)

    Google Scholar 

  9. M.E. Raypah, B.K. Sodipo, M. Devarajan et al., Estimation of luminous flux and luminous efficacy of low-power SMD LED as a function of injection current and ambient temperature. IEEE Trans. Electron. Dev. 63(7), 2790–2795 (2016)

    Article  ADS  Google Scholar 

  10. A.A. Wereszczak, T.G. Morrissey, C.N. Volante et al., Thermally conductive MgO-filled epoxy molding compounds. IEEE Trans. Compon. Pack. Manuf. Technol. 3(12), 1994–2005 (2013)

    Article  Google Scholar 

  11. Z. Habibah, R. Abu Bakar, M.R. Mahmood et al., Molar concentration effect on MgO thin films properties. in 2011 IEEE Symposium on Industrial Electronics and Applications (ISIEA 2011), pp 468–471

  12. M.D. Rozan, A.N. Arshad, M.H. Wahid et al., Electrical and structural properties of PVDF/Mgo (7%) nanocomposites thin films at various annealing temperatures. Int. J. Res. Sci. 3(1), 8–12 (2017)

    Article  Google Scholar 

  13. K. Murakami, K. Deguchi, K. Yamada et al., Preparation of Soluble Polimide–MgO nanohybride films by in situ hybridization method and evaluation of their thermal conductivity. J. Photopolym Sci. Technol. 23(4), 501–506 (2010)

    Article  Google Scholar 

  14. K.E. Meyer, R. Cheaito, E. Paisley et al., Crystalline coherence length effects on the thermal conductivity of MgO thin films. J. Mater. Sci. 51, 10408–10417 (2016)

    Article  ADS  Google Scholar 

  15. S. Valanarasu, V. Dhanasekaran, M. Karunakaran et al., Microstructural, optical and electrical properties of various time annealed spin coated MgO thin films. J. Mater. Sci. Mater. Electron. 25, 3846–3853 (2014)

    Article  Google Scholar 

  16. Plastic-determination of thermal conductivity and thermal diffusivity—part 2: transient plane heat source (hot disc) method. (International organisation for standardization ISO 22007-2:2015, 2015) http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_details.htm?csnumber=40683. Accessed 25 Jan 2019. ISO 22007-2 (2008)

  17. X. Cao, T. Wang, K.D.T. Ngo et al., Characterization of lead-free solder and sintered nano-silver die-attach layers using thermal impedance. IEEE Trans. Compon. Pack. Manuf. Technol. 1, 495–501 (2011)

    Article  Google Scholar 

  18. P. Vuoristo, T. Mäntylä, P. Kettunen, Adhesion and structure of rf sputtered magnesium oxide coatings on various metal substrates. J. Vac. Sci. Technol. A 4, 2932–2937 (1986)

    Article  ADS  Google Scholar 

  19. D.S. Ponja, P.I. Parkin, J.C. Claire, Magnesium oxide thin films with tunable crystallographic preferred orientation via aerosol-assisted CVD. Chem. Vap. Depos. 21, 145–149 (2015)

    Article  Google Scholar 

  20. M. Jlassi, I. Sta, M. Hajji et al., Optical and electrical properties of nickel oxide thin films synthesized by sol-gel spin coating. Mat. Sci. Semicond. Proc. 21, 7–13 (2014)

    Article  Google Scholar 

  21. H. Dong, B. Wen, R. Melnik, Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. UK 4(7037), 1–5 (2014)

    Google Scholar 

  22. Y. Sun, Y. Zhou, J. Han, M. Hu et al., Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron. J. Appl. Phys. 127, 1–6 (2020)

    Google Scholar 

  23. L.H. Qian, S.C. Wang, Y.H. Zhao et al., Microstrain effect on thermal properties of nanocrystalline Cu. Acta Mater. 50, 3425–3434 (2002)

    Article  Google Scholar 

  24. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014)

    Article  ADS  Google Scholar 

  25. R. Prasher, Thermal interface materials: Historical perspective, status, and future directions. Proc. IEEE 94(8), 1571–1587 (2006)

    Article  Google Scholar 

  26. K.N. Babu, Thermal contact resistance: experiments and simulations. Master’s Thesis Department of Applied Mechanics, Chalmers University of Technology, Göteborg, (2015)

  27. S. Subramani, T. Nadarajah, M. Devarajan, Thermal resistance studies of surface modified heat sink for 3 W LED using transient curve. Microelectron. Int. 30(2), 77–84 (2013)

    Article  Google Scholar 

  28. P.E. Hopkins, Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 2013, 1–19 (2013)

    Article  Google Scholar 

  29. S. Subramani, T. Nadarajah, M. Devarajan, Thermal resistance studies of surface modified heat sink for 3 W LED using transient curve. Microelectron. Int. 30, 77–84 (2013)

    Article  Google Scholar 

  30. S. Subramani, H. Abu Hassan, M. Devarajan, Performance of high power light emitting diode for various zinc oxide film thickness as thermal interface material. Int. J. Res. Eng. Technol. 2, 113–119 (2013)

    Google Scholar 

  31. E. Ejidio, J.M. Steven, N. Julian, Thermal jiont conductance for flexible graphite materials: analytical and experimental study. IEEE Trans. Compon. Pack. Technol. 28, 102–110 (2005)

    Article  Google Scholar 

  32. S. Shanmugan, M. Devarjan, Thermal transient analysis of high power LED employing spin coated silver doped ZnO thin film on Al substrates as heat sink. J. Optoelectron. Biomed. Mater. 7(1), 1–9 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmugan Subramani.

Ethics declarations

Conflict of interest

On behalf of all the authors and the research institution, there is not any conflicts of interest financially, non-financially, directly or indirectly related to the research work, the authors or between the authors and their research institution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idris, M.S., Subramani, S. Performance of 9.0 W light-emitting diode on various layers of magnesium oxide thin film thermal interface material. Appl. Phys. A 126, 646 (2020). https://doi.org/10.1007/s00339-020-03820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03820-y

Keywords

Navigation