Skip to main content
Log in

Microstructure and properties of Al2O3-ZrO2-Y2O3 coatings during high temperature and thermal shock resistance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Al2O3-ZrO2 composite coatings were fabricated by plasma spraying Al2O3-ZrO2 composite powders with and without Y2O3 addition to learn the influence of Y2O3 on high temperature stability of the coating. The two coatings both underwent phase transformation in the process of heat treatment. Specifically, XRD results showed that in the Al2O3-ZrO2-Y2O3 coating, Y3Al5O12 (YAG) phase existed after heating at 800 °C, and γ-Al2O3 all transformed to α-Al2O3 after heating at 1200 °C, so the composition of the coating was t-ZrO2, α-Al2O3 and YAG after heating at 1200 °C, while in the Al2O3-ZrO2 coating, the final coating consisted of t-ZrO2 and α-Al2O3 beacuse γ-Al2O3 all transformed to α-Al2O3 after heating at 1200 °C. The amorphous phase in the two as-sprayed coatings had been crystallized completely after heat treatment at 1200 °C. Heat treatment can reduce the porosity and improve the hardness of the two coatings, and YAG phase can also improve the hardness. The coating with TC4 substrate had better thermal shock resistance than it with Q235 steel substrate. The thermal shock resistance of the Al2O3-ZrO2-Y2O3 coating was better than that of the Al2O3-ZrO2 coating at same condition. NiCrAlY bonding layer can improve thermal shock resistance of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Zhao, S.Q. Xia, Y.G. Wang et al., Appl. Phys. A. 126, 1–9 (2020)

    Google Scholar 

  2. H.M. Hawthorne, L.C. Erickson, D. Ross. Wear. 203, 709–714 (1997)

    Article  Google Scholar 

  3. Y. Yang, Y. Wang, W. Tian et al., J. Alloys Compd. 622, 929 (2015)

    Article  Google Scholar 

  4. S.J. Dong, B. Song, H.L. Lia et al., Appl. Phys. A. 118, 283–290 (2015)

    Article  ADS  Google Scholar 

  5. R. Westergård, N. Axén, U. Wiklund et al., Wear. 246, 12–19 (2000)

    Article  Google Scholar 

  6. I. Ahmad, S. Ahmed, T. Subhani et al., Curr. Appl. Phys. 16, 1649–1658 (2016)

    Article  ADS  Google Scholar 

  7. K.B. Sachidananda, K. Mahesha, A.J. Dey, Ceram. Int. 44, 158–163 (2018)

    Article  Google Scholar 

  8. S. Chen, J. Xiang, J. Huang et al., Appl. Surf. Sci. 340, 173–181 (2015)

    Article  ADS  Google Scholar 

  9. W.R. Chen, X. Wu, D. Dudzinski et al., Surf. Coat. Technol. 200, 5863–5868 (2006)

    Article  Google Scholar 

  10. P. Fauchais, M. Vardelle, A. Vardelle et al., Plasma Chem. Plasma Process. 16, S99–S125 (1995)

    Article  Google Scholar 

  11. Y. Wang, Y. Bai, K. Liu et al., Appl. Surf. Sci. 363, 101–112 (2016)

    Article  ADS  Google Scholar 

  12. P. Wei, Z. Wei, S. Li et al., Appl. Surf. Sci. 321, 538–547 (2014)

    Article  ADS  Google Scholar 

  13. S. Lee, H. Choi, S. Shin et al., Curr. Appl. Phys. 14, 552–557 (2014)

    Article  ADS  Google Scholar 

  14. C.G. Aneziris, S. Dudczig, N. Gerlach et al., Adv. Eng. Mater. 12, 478–485 (2010)

    Article  Google Scholar 

  15. F. Tarasi, M. Medraj, A. Dolatabadi et al., J. Adv. Funct. Mater. 21, 4143–4151 (2011)

    Article  Google Scholar 

  16. G.D. West, J.M. Perkins, M.H. Lewis, J. Eur. Ceram. Soc. 27(4), 1913–1918 (2007)

    Article  Google Scholar 

  17. K. Yang, J. Rong, J.W. Feng et al., J. Eur. Ceram Soc. 36, 4261–4267 (2016)

    Article  Google Scholar 

  18. M. Wang, L.L. Shaw, Surf. Coat. Technol. 202, 34–44 (2007)

    Article  Google Scholar 

  19. A. Keyvani, J. Alloys Compd. 623, 229–237 (2015)

    Article  Google Scholar 

  20. R. Younes, M.A. Bradai, A. Sadeddine et al., Chin J Nonferrous Met. 26, 1345–1352 (2016)

    Article  Google Scholar 

  21. A.L. Vasiliev, N.P. Padture, Acta Mater. 54, 4921–4928 (2006)

    Article  Google Scholar 

  22. P. Ramaswamy, S. Seetharamu, K.B.R. Varma et al., Sci. Technol. 57, 81–89 (1997)

    Google Scholar 

  23. X.Q. Zhao, Y.L. An, J.M. Chen et al., Wear 265, 1642–1648 (2008)

    Article  Google Scholar 

  24. F. Tarasi, M. Medraj, A. Dolatabadi et al., J. Eur. Ceram. Soc. 31, 2903–2913 (2011)

    Article  Google Scholar 

  25. X.M. Song, T. Suhonen, T. Varis, J. Therm SprayTechn 23, 1302–1311 (2014)

    Article  ADS  Google Scholar 

  26. H.J. Kim, Y.J. Kim, J. Mater. Sci. 34(29), 3 (1999)

    Google Scholar 

  27. J. Suffner, H. Sieger, H. Hahn et al., J. Mater. Sci. Eng, A. 506, 180–186 (2009)

    Article  Google Scholar 

  28. D. Chen, E.H. Jordan, M. Gell et al., J. Am. Ceram. Soc. 91, 359–365 (2008)

    Article  Google Scholar 

  29. A. Mcdonald, S. Chandra, M. Lamontagne et al., Therm. Spray Technol. 15, 708–716 (2006)

    Article  ADS  Google Scholar 

  30. J.O. Berghaus, J.G. Legoux, C. Moreau et al., Therm. Spray Technol. 17, 91–104 (2008)

    Article  ADS  Google Scholar 

  31. X. Zhou, V. Shukla, W.R. Cannon, J. Am. Ceram. Soc. 6, 1415–1420 (2003)

    Article  Google Scholar 

  32. X Zhang, Y. W. Wang, W. W. Wang et al., J. Therm. Spray. Tech. https://doi.org/10.1007/s11666-020-01043-4

  33. M.J. Liu, Z. Wang, X.W. Luan, J. Alloys Compd. 656, 929–935 (2016)

    Article  Google Scholar 

  34. L. Liang, X.N. Li, Y.G. Wei, Int. J. Appl. Ceram. Technol. 12, 1096–1102 (2015)

    Article  Google Scholar 

  35. C. Wang, Y. Xia, R.Q. Qiao et al., Int. J. Appl. Ceram. Technol. 16, 1373–1380 (2019)

    Article  Google Scholar 

  36. Q. Zhang, C.J. Li, Y. Li, Therm. Spray Technol. 17, 838–845 (2008)

    Article  ADS  Google Scholar 

  37. Y. Wang, W. Tian, Y. Yang, Surf. Coat. Technol. 201, 7746–7754 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (51672067, 51541208, 51102074), the Natural Science Foundation of Hebei Province (E2018202034, E2015202070), Foundation for Talent Training Project in Hebei Province (A2016002026) and Foundation for the top talents in Universities in Hebei Province (SLRC2017027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, WW., Wang, XL., Sun, XW. et al. Microstructure and properties of Al2O3-ZrO2-Y2O3 coatings during high temperature and thermal shock resistance. Appl. Phys. A 126, 639 (2020). https://doi.org/10.1007/s00339-020-03819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03819-5

Keywords

Navigation