Skip to main content
Log in

Optical and electrical properties of poly (N-vinylcarbazole)/graphene oxide nanocomposites for organic semiconductor devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, organic semiconductor devices (OSD) incorporating both poly(N-vinylcarbazole) (PVK) and graphene oxide (GO) were fabricated. The stable solutions of PVK/GO were prepared in chloroform by a simple sonication method, which enabled the successful dispersion of GO with the polymer matrix. These nanomaterials have been used in the fabrication of OSD with configuration ITO/PVK:GO/Ag. The electrical and optical properties were investigated using several techniques. The electrical measurements show that the electrical behavior of PVK polymer enhanced with increasing GO nanofillers concentration. The observed electrical improvement in the nanocomposites can be attributed to the charge transfer interaction between carbazole electron donor and the functional groups onto the surface of GO. UV–Vis absorption and photoluminescence studies elucidated the energy transfer and the interaction between polymer chains and the graphene nanosheets which exhibit a strong blue-green luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Boudrioua, M. Chakaroun, A. Fischer, An Introduction to Organic Lasers, Chapter III (Elsevier, 2017), pp. 95–130

  2. S. Bhadra, R. Mostafizur, P. Noorunnisa Khanam, Electrical and electronic application of polymer–carbon composites, Carbon-containing polymer composites (Springer, Singapore, 2019), pp. 397–455

    Chapter  Google Scholar 

  3. C.H. Kim, I. Kymissis, Graphene–organic hybrid electronics. J. Mater. Chem. C 5(19), 4598–4613 (2017)

    Article  Google Scholar 

  4. W. Gao, The chemistry of graphene oxide, in Graphene oxide, ed. by W. Gao (Springer, Cham, 2015), pp. 61–95

    Chapter  Google Scholar 

  5. M. Bera, P.K. Maji, Graphene-based polymer nanocomposites: materials for future revolution. MOJ Poly Sci. 1(3), 00013 (2017)

    Google Scholar 

  6. L.C. Tang, L. Zhao, L.Z. Guan, in Advanced Composite Materials: Properties and Applications ed. by E. Bakerpour (De Gruyter Open LTD, Warsaw/Berlin, 2017), pp. 349–419

  7. L. Zhang, H. Wu, M. Wei, D.D. Vu, T. Bui, X. Huang, J. Coat. Technol. Res. 15, 1343–1356 (2018)

    Article  Google Scholar 

  8. U. Mehmood, H. Asghar, F. Babar, M. Younas, Sol. Energy 196, 132–136 (2020)

    Article  ADS  Google Scholar 

  9. T. Li, X. Wang, P. Liu, B. Yang, S. Diao, Y. Gao, J. Electroanal. Chem. 860, 113908 (2020)

    Article  Google Scholar 

  10. R. Khalili, P. Zarrintaj, S.H. Jafari, H. Vahabi, M.R. Saeb, Int. J. Biol. Macromol. 154, 18–24 (2020)

    Article  Google Scholar 

  11. Q. Zhang, J. Pan, X. Yi, L. Li, S. Shang, Org. Electron. 13(8), 1289–1295 (2012)

    Article  Google Scholar 

  12. A.N. Aleshin, I.P. Shcherbakov, A.S. Komolov, V.N. Petrov, I.N. Trapeznikova, Org. Electron. 16, 186–194 (2015)

    Article  Google Scholar 

  13. M. Goumri, B. Lucas, B. Ratier, M. Baitoul, J. Electron. Mater. 48(2), 1097–1105 (2019)

    Article  ADS  Google Scholar 

  14. J. Wang, Y. Wang, D. He, H. Wu, H. Wang, P. Zhou, M. Fu, Integr. Ferroelectr. 137(1), 1–9 (2012)

    Article  Google Scholar 

  15. R.S. Sonone, V.M. Raut, G.H. Murhekar, Int. J. Adv. Res. Chem. Sci. 1(1), 87–94 (2014)

    Google Scholar 

  16. S.A. Senawi, A. Kasim, W.A.W. Razali, R. Mohamed, H.J.M. Ridzwan, J. Solid. State. Sci. Technol. 19, 200–206 (2011)

    Google Scholar 

  17. H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998)

    Article  ADS  Google Scholar 

  18. K. Bindumadhavan, S. Roy, S.K. Srivastava, B.B. Nayak, J. Nanosci. Nanotechnol. 15, 3733–3742 (2015)

    Article  Google Scholar 

  19. R. Advincula, Polymer nanocomposite precursors with carbon nanotubes and/or graphene and related thin films and patterning. Patent N°US 8,932,671 B2 (2015)

  20. B. Chenlu, G. Yuqiang, S. Lei, H. Yuan, Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide:a comparative investigation of property and mechanism. J. Mater. Chem. 21, 13942 (2011)

    Article  Google Scholar 

  21. E.H. Hwang, S. Adam, S.D. Sarma, Phys. Rev. Lett. 98, 186806 (2007)

    Article  ADS  Google Scholar 

  22. Y. Song, Q.D. Ling, S.L. Lim, E.Y.H. Teo, Y.P. Tan, L. Li, E.T. Kang, D.S.H. Chan, C. Zhu, IEEE Electr. Dev. L 28(2), 107–110 (2007)

    Article  ADS  Google Scholar 

  23. H. Saidi, W. Aloui, H. Dhifaoui et al., J. Mater. Sci. Mater. Electron. 30, 10808–10813 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Goumri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goumri, M., Hatel, R., Ratier, B. et al. Optical and electrical properties of poly (N-vinylcarbazole)/graphene oxide nanocomposites for organic semiconductor devices. Appl. Phys. A 126, 647 (2020). https://doi.org/10.1007/s00339-020-03812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03812-y

Keywords

Navigation