Skip to main content

Advertisement

Log in

Phase transformation in wet chemically synthesized Y2NiFeO6, and its magnetic and energy storage properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work we report, the structural, magnetic, and energy storage properties of double perovskite oxide Y2NiFeO6 synthesized via wet chemical sol–gel process. The amorphous phase structure obtained at the synthesis temperature of 650 °C, turned to mixed cubic-hexagonal phase of Y2NiFeO6 at 850 °C, and subsequently to thermally stable mixed cubic-orthorhombic phase at and above the temperature of 950 °C. The X-ray photoelectron spectra of thermally stable phase of Y2NiFeO6 exhibited the presence of yttrium in Y3+ state, nickel in Ni2+/Ni3+ state and iron in Fe3+ state. The Y2NiFeO6 exhibited room temperature ferromagnetic behavior with Curie temperature at or above the room temperature. The highest specific capacitance achieved via cyclic voltammetry in three-electrode system was 74.10 F/g at the scan rate of 5 mV/s. It has remarkable specific capacitance retention of ~ 95% after 5000 chargingdischarging cycles at the current density of 6 A/g. The energy storage parameters i.e., energy density and power density were ~ 3.93 Wh/kg and  ~ 810.03 Wkg−1, respectively at current density of 1 A g−1.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Vasala, M. Karppinen, A2B′B″O6 perovskites: a review. Prog. J. Solid State Chem. 43, 1–36 (2015). https://doi.org/10.1016/j.progsolidstchem.2014.08.001

    Article  Google Scholar 

  2. J.E. Tasca, A.E. Lavat, M.G. González, Double perovskites La2MMnO6 as catalyst for propane combustion. J. Asian Ceram. Soc. 5, 235–241 (2017). https://doi.org/10.1016/j.jascer.2017.02.004

    Article  Google Scholar 

  3. N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv. Mater. 17, 2225–2227 (2005). https://doi.org/10.1002/adma.200500737

    Article  Google Scholar 

  4. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Room temperature magnetoresistance in an oxide material with an ordered double perovskite structure. Nature 395, 677–680 (1998). https://doi.org/10.1038/27167

    Article  ADS  Google Scholar 

  5. J. Zhang, W.J. Ji, J. Xu, X.Y. Geng, J. Zhou, Z.B. Gu, S.H. Yao, S.T. Zhang, Giant positive magnetoresistance in half-metallic double-perovskite Sr2CrWO6 thin films. Sci. Adv. 3, e1701473 (2017). https://doi.org/10.1126/sciadv.1701473

    Article  ADS  Google Scholar 

  6. J.A. Alonso, M.T. Casais, M.J. Martínez-Lope, J.L. Martínez, P. Velasco, A. Muñoz, M.T. Fernández-Díaz, Preparation, Crystal Structure, and magnetic and magnetotransport properties of the double perovskite Ca2FeMoO6. Chem. Mater. 12, 161–168 (2020). https://doi.org/10.1021/cm990512g

    Article  Google Scholar 

  7. R. Pradheesh, H.S. Nair, V. Sankaranarayanan, K. Sethupathi, Large magnetoresistance and Jahn-Teller effect in Sr2FeCoO6. Phys. J. B Eur. (2012). https://doi.org/10.1140/epjb/e2012-30264-2

    Article  Google Scholar 

  8. Y. Jia, X. Zhang, Z. Zhang, L. Li, Effect of sintering temperature on microstructure and magnetic properties of double perovskite Y2CoMnO6. Ceram. Int. 44, 19794–19799 (2018). https://doi.org/10.1016/j.ceramint.2018.07.236

    Article  Google Scholar 

  9. J. Su, Z.Z. Yang, X.M. Lu, J.T. Zhang, L. Gu, C.J. Lu, Q.C. Li, J.-M. Liu, J.S. Zhu, Magnetism-driven ferroelectricity in double perovskite Y2NiMnO6. ACS Appl. Mater. Inter. 7, 13260–13265 (2015). https://doi.org/10.1021/acsami.5b00911

    Article  Google Scholar 

  10. G.R. Haripriya, S.P. Balmuchu, R. Pradheesh, The effect of particle size on the magnetic properties of Y2FeCoO6. Proc. Int. Conf. Nanotechnol. Better Living. 3, 173 (2016). https://doi.org/10.3850/978-981-09-7519-7nbl16-rps-173

    Article  Google Scholar 

  11. M. Ickler, M. Devi, I. Rogge, J. Singh, A. Kumar, Ethylene glycol/citric acid stabilized wet chemically synthesized Y2CoNiO6, and its structural, dielectric, magnetic and electrochemical behaviour. Electron 31, 6977–6987 (2020). https://doi.org/10.1007/s10854-020-03263-4

    Article  Google Scholar 

  12. H. Kozuka, K. Ohbayashi, K. Koumoto, Electronic conduction in La-based perovskite-type oxides. Sci. Technol. Adv. Mater. 16, 026001 (2015). https://doi.org/10.1088/1468-6996/16/2/026001

    Article  Google Scholar 

  13. Y.B. Wu, J. Bi, B.B. Wei, Preparation and supercapacitor properties of double-perovskite La2CoNiO6 inorganic nano-fibers. Acta. Phys. - Chim. Sin. 31, 315 (2015). https://doi.org/10.3866/PKU.WHXB201412164

    Article  Google Scholar 

  14. J. Singh, A. Kumar, Facile wet chemical synthesis and electrochemical behavior of La2FeCoO6 nano-crystallites. Mater. Sci. Semicond. Process. 99, 8–13 (2019). https://doi.org/10.1016/j.mssp.2019.04.007

    Article  Google Scholar 

  15. A. Kumar, A. Kumar, Electrochemical behavior of oxygen-deficient double perovskite, Ba2FeCoO6-δ, synthesized by facile wet chemical process. Ceram. Int. 45, 14105 (2019). https://doi.org/10.1016/j.ceramint.2019.04.110

    Article  Google Scholar 

  16. Y. Liu, Z. Wang, J.P.M. Veder, Z. Xu, Y. Zhong, W. Zhou, M.O. Tade, S. Wang, Z. Shao, Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen-anion intercalation. Adv. Energy Mater. 8, 1702604 (2018). https://doi.org/10.1002/aenm.201702604

    Article  Google Scholar 

  17. M. Alam, K. Karmakar, M. Pal, K. Mandal, Electrochemical supercapacitor based on double perovskite Y2NiMnO6 nanowires. RSC Adv. 6, 114722–114726 (2016). https://doi.org/10.1039/C6RA23318J

    Article  Google Scholar 

  18. F.N. Mansoorie, J. Singh, A. Kumar, Wet chemical synthesis and electrochemical performance of novel double perovskite Y2CuMnO6 nanocrystallites. Mater. Sci. Semicond. Process. 107, 104826 (2020). https://doi.org/10.1016/j.mssp.2019.104826

    Article  Google Scholar 

  19. J. Singh, A. Kumar, Solvothermal synthesis dependent structural, morphological and electrochemical behaviour of mesoporous nanorods of Sm2NiMnO6. Ceram. Int. 46, 11041–11048 (2020). https://doi.org/10.1016/j.ceramint.2020.01.122

    Article  Google Scholar 

  20. J. Singh, U.K. Goutam, A. Kumar, Hydrothermal synthesis and electrochemical performance of nanostructured cobalt free La2CuMnO6. Solid State Sci. 95, 105927 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.06.016

    Article  Google Scholar 

  21. W. Zhong, X.L. Wu, N.J. Tang, W. Liu, W. Chen, C.T. Au, Y.W. Du, Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry. Eur. Phys. J. B. 217, 213–217 (2004). https://doi.org/10.1140/epjb/e2004-00312

    Article  ADS  Google Scholar 

  22. F. Liu, J. Li, Q. Li, Y. Wang, X. Zhao, Y. Hua, C. Wang, X. Liu, High pressure synthesis, structure, and multiferroic properties of two perovskite compounds Y2FeMnO6 and Y2CrMnO6. Dalton T. 43, 1691–1698 (2014). https://doi.org/10.1039/c3dt52336e

    Article  Google Scholar 

  23. R. Mohassel, A. Sobhani, M. Salavati-Niasari, M. Goudarzi, Pechini synthesis and characteristics of Gd2CoMnO6 nanostructures and its structural, optical and photocatalytic properties. Spectrochim. Acta A. 204, 232–240 (2018). https://doi.org/10.1016/j.saa.2018.06.050

    Article  ADS  Google Scholar 

  24. M. Ismael, E. Elhaddad, D.H. Taffa, M. Wark, Synthesis of phase pure hexagonal YFeO3 perovskite as efficient visible light active photocatalyst. Catalysts 7, 326 (2017). https://doi.org/10.3390/catal7110326

    Article  Google Scholar 

  25. F.S. Al-Hazmi, A.A. Al-Ghamdi, L.M. Bronstein, L.S. Memesh, F.S. Shokr, M. Hafez, T he influence of sintering temperature on the structure, optical and magnetic properties of yttrium iron oxide YFeO3 prepared via Lα-alanine assisted combustion method. Ceram. Int. 43, 8133–8138 (2017). https://doi.org/10.1016/j.ceramint.2017.03.137

    Article  Google Scholar 

  26. A.A. Kumar, A. Kumar, J.K. Quamara, Cetyltriammonium bromide assisted synthesis of lanthanum containing barium stannate nanoparticles for application in dye sensitized solar cells. Phys. Status Solidi A. 215, 1700723 (2018). https://doi.org/10.1002/pssa.201700723

    Article  ADS  Google Scholar 

  27. C. Jagadeeshwaran, A.P.B. Selvadurai, V. Pazhanivelu, R. Murugaraj, Structure, optical and magnetic behavior of LaFeO3 and LaFe0.9Ni0.1O3 by combustion method. Int. J. Innov. Res. Sci. Eng. (2013). https://doi.org/10.13140/2.1.1506.4966

    Article  Google Scholar 

  28. M. Sivakumar, K. Pandi, S.M. Chen, Y.H. Cheng, M. Sakthivel, Facile synthesis of perovskite-type NdNiO3 nanoparticles for effective electrochemical non-enzymatic glucose biosensor. New J. Chem. 41, 11201–11207 (2017). https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  29. K. Datta, R.B. Neder, J. Chen, J.C. Neuefeind, B. Mihailova, Atomic-level structural correlations across the morphotropic phase boundary of a ferroelectric solid solution: xBiMg1/2Ti1/2O3-(1–x)PbTiO3. Sci. Rep. 7, 471 (2017). https://doi.org/10.1038/s41598-017-00530-z

    Article  ADS  Google Scholar 

  30. N. Basavegowda, K. Mishra, R.S. Thombal, K. Kaliraj, Y.R. Lee, Sonochemical green synthesis of yttrium oxide (Y2O3) nanoparticles as a novel heterogeneous catalyst for the construction of biologically interesting 1,3-Thiazolidin – 4-ones. Catal. Lett. 147, 2630–2639 (2017). https://doi.org/10.1007/s10562-017-2168-4

    Article  Google Scholar 

  31. H. Xia, D. Zhu, Z. Luo, Y. Yu, X. Shi, G. Yuan, J. Xie, Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci. Rep. 3, 1–8 (2013). https://doi.org/10.1038/srep02978

    Article  Google Scholar 

  32. P.A. Joy, P.S.A. Kumar, S.K. Date, The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems. J. Phys. Condens. Matter 10, 11049–11054 (1998). https://doi.org/10.1088/0953-8984/10/48/024

    Article  ADS  Google Scholar 

  33. F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T.T. Xu, J. He, C. Yue, J. Zhu, Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci. Rep. 3, 2907 (2017). https://doi.org/10.1038/srep02907

    Article  Google Scholar 

  34. H. Shen, J. Xu, A. Wu, J. Zhao, M. Shi, Magnetic and thermal properties of perovskite YFeO3 single crystals. Adv. Mat. Sci. Eng. B. 157, 77–80 (2009). https://doi.org/10.1016/j.mseb.2008.12.020

    Article  Google Scholar 

  35. S. Hirosawa, M. Nishino, S. Miyashita, Perspectives for high-performance permanent magnets: applications, coercivity, and new materials. Adv. Nat. Sci. - Nanosci. 8, 13002 (2017). https://doi.org/10.1088/2043-6254/aa597c

    Article  Google Scholar 

  36. C. Tannous, R.L. Comstock, Magnetic information-storage materials, in Springer handbook of electronic and photonic materials. Springer handbooks, ed. by S. Kasap, P. Capper (Springer, Cham, 2017), pp. 1–1. https://doi.org/10.1007/978-3-319-48933-9_49

    Chapter  Google Scholar 

  37. V. Chaudhary, R.V. Ramanujan, Magnetocaloric properties of Fe-Ni-Cr nanoparticles for active cooling. Sci. Rep. 6, 35156 (2016). https://doi.org/10.1038/srep35156

    Article  ADS  Google Scholar 

  38. S. Tehrani, E. Chen, M. Durlam, M. DeHerrera, J.M. Slaughter, J. Shi, G. Kerszykowski, High density submicron magnetoresistive random access memory (invited). J. Phys. 85, 5822 (1999). https://doi.org/10.1063/1.369931

    Article  Google Scholar 

  39. J. Zhang, Y. Sun, X. Li, J. Xu, Fabrication of porous NiMn2O4 nanosheet arrays on nickel foam as an advanced sensor material for non-enzymatic glucose detection. Sci. Rep. 9, 18121 (2019). https://doi.org/10.1038/s41598-019-54746-2

    Article  ADS  Google Scholar 

  40. J. Singh, A. Kumar, U.K. Goutam, A. Kumar, Microstructure and electrochemical performance of La2ZnMnO6 nanoflakes synthesized by facile hydrothermal route. Appl. Phys. A. 126, 11 (2020). https://doi.org/10.1007/s00339-019-3195-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author (MD) thanks National Institute of Technology, Kurukshetra for providing Institute research fellowship. Author (AK2) acknowledges the support of CSIR New Delhi, India (F. No. 22(0778)/18/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashok Kumar or Ashavani Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, M., Kumar, A. & Kumar, A. Phase transformation in wet chemically synthesized Y2NiFeO6, and its magnetic and energy storage properties. Appl. Phys. A 126, 622 (2020). https://doi.org/10.1007/s00339-020-03802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03802-0

Keywords

Navigation