Skip to main content
Log in

Copper dopants impact enhanced behavior of Mn:Cu co-doped CdS nanocrystals (quantum dots) and their characteristics for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mn and Cu:Mn co-doped CdS nanostructures were chemically prepared and deposited as thin films on glass slides by PLD technique. XRD peaks showed hexagonal nanostructure (Greenockite) phase. The studied parameters are as follows: strain, particle size, bond length, and stress to get more information about crystal structures. The analysis confirmed that the Cu/Mn ratio co-doping remarkably influenced the surface morphologies of the (CuxMn1−x) co-doped CdS (QDs) at (x = 0, 1, 2 and 3) at.%. The chemical composition analysis EDX announced that the Cu/Mn is present in the doped films. Two luminescence peaks appeared in the photoluminescence (PL) spectrum for all samples of the compounds referring recombination of the defect sates of Mn:CdS. The energy gap values of all deposited films were observed to be in the range of (2.97‒2.74) eV, optical absorbance has two absorption peaks, and shifted to higher wavelengths, UV–Vis particle size was in the range (2.47‒3.10 nm) and was estimated using Brus equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Z. Kanwal, M.N. Usmani, Mater. Res. Express. 5(1), 015915 (2018)

    Article  ADS  Google Scholar 

  2. R. Beaulac, P.I. Archer, S.T. Ochsenbein, D.R. Gamelin, Adv. Funct. Mater. 18, 3873–3891 (2008)

    Article  Google Scholar 

  3. D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, U. Banin, Science 332, 77–81 (2011)

    Article  ADS  Google Scholar 

  4. T. Ganesh, R.S. Mane, G. Cai, J.-H. Chang, S.-H. Han, J. Phys. Chem. C 113, 7666–7669 (2009)

    Article  Google Scholar 

  5. S.G. Hickey, D.J. Riley, J. Phys. Chem. B 103, 4599–4602 (1999)

    Article  Google Scholar 

  6. D. Zhang, Y. Chen, H. Pang, Y. Yu, H. Ma, Electrochim. Acta 105, 560–568 (2013)

    Article  Google Scholar 

  7. S.N. Ding, J.J. Xu, D. Shan, B.H. Gao, H.X. Yang, Y.M. Sun, S. Cosnier, Electrochem. Commun. 12, 713–716 (2010)

    Article  Google Scholar 

  8. P.N. Favennec, H.L. Haridon, M. Salvi, Y.L. Gauillo, materials. Electron. Lett. 25, 718–719 (1989)

    Article  ADS  Google Scholar 

  9. N. Tessler, V. Medvedev, M. Kazes, S.H. Kan, U. Banin, Science 295, 1506–1508 (2002)

    Article  ADS  Google Scholar 

  10. A. Ganguly, S.S. Nath, M. Choudhury, IET Micro Nano Lett 13(8), 1188–1191 (2018)

    Article  Google Scholar 

  11. A. Ganguly, S.S. Nath, Mater. Sci. Eng., B 255, 114532 (2020)

    Article  Google Scholar 

  12. A. Ganguly, S.S. Nath, M. Choudhury, IEEE J. Photovolt. 8(6), 1656–1661 (2018)

    Article  Google Scholar 

  13. K. Sankarasubramanian, P. Soundarrajan, T. Logu, S. Kiruthika, K. Sethuraman, R.R. Babu, K. Ramamurthi, Mater. Sci. Semicond. Process. 26, 346–353 (2014)

    Article  Google Scholar 

  14. A.A. Dakhel, Solid State Sci. 31, 1–7 (2014)

    Article  ADS  Google Scholar 

  15. N.H. Patel, M.P. Deshpande, S.V. Bhatt, S.H. Chaki, Adv. Mater. Lett. 5, 671–677 (2014)

    Article  Google Scholar 

  16. B.K. Sarkar, Int. J. Appl. Phys. Math. 4, 176 (2014)

    Article  Google Scholar 

  17. T. Shen, J. Tian, L. Lv, C. Fei, Y. Wang, T. Pullerits, G. Cao, Electrochim. Acta 191, 62–69 (2016)

    Article  Google Scholar 

  18. A.T. Salih, K.R. Gbashi, A.A. Najim, M.A. Muhi, Mater. Res. Express. 6, 076415 (2019)

    Article  ADS  Google Scholar 

  19. M. Mall, L. Kumar, J. Lumin. 130, 660–665 (2010)

    Article  Google Scholar 

  20. H.M. Kotb, M.A. Dabban, A.Y. Abdel-Latif, M.M. Hafiz, J. Alloys Compd. 512(1), 115–120 (2012)

    Article  Google Scholar 

  21. K.R. Gbashi, Investigation of morphological, optical and structural properties of multi-layer coatings for solar energy. Appl. Phys. A 126, 275 (2020). https://doi.org/10.1007/s00339-020-3419-6

    Article  ADS  Google Scholar 

  22. K.R. Gbashi, A.T. Salih, A.A. Najim, M.A. Muhi, J. Mater. Sci.: Mater. Electron. 28(20), 15089–15094 (2017)

    Google Scholar 

  23. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, 149(43–44), 1919–1923 (2009)

  24. C.S. Barret, T.B. Massalski, Structure of metals (Pergamon Press, Oxford, 1980)

    Google Scholar 

  25. R. VinodKumar, K.J. Lethy, P.R. Arunkumar, R.R. Krishnan, N. Venugopalan Pillai, V.P. Mahadevan Pillai, Reji Philip, Mater. Chem. Phys. 121, 406 (2010)

    Article  Google Scholar 

  26. J. Shen, S. Johnston, S. Shang, T. Anderson, J. Cryst. Growth 240(1–2), 6–13 (2002)

    Article  ADS  Google Scholar 

  27. D.I. Bolef, N.T. Melamed, M. Menes, Elastic constants of hexagonal cadmium sulfide. J. Phys. Chem. Solids 17(1–2), 143–148 (1960)

    Article  ADS  Google Scholar 

  28. R. Kumar, R. Dass, M. Gupta, V. Ganesan, Superlattices Microstruct. 75, 601–612 (2014)

    Article  ADS  Google Scholar 

  29. A.A. Najim, M.A. Muhi, K.R. Gbashi, A.T. Salih, Plasmonics 13(3), 891–895 (2018)

    Article  Google Scholar 

  30. M.A. Muhi, K.R. Gbashi, A.T. Salih, A.A. Najim, Plasmonics 13(1), 247–250 (2018)

    Article  Google Scholar 

  31. T.S. Moss, Proc. Phys. Soc. B 67, 775–782 (1954)

    Article  ADS  Google Scholar 

  32. R. Aydin, H. Cavusoglu, B. Sahin, J. Alloys Compd. 785, 523–530 (2019)

    Article  Google Scholar 

  33. L.H. Qian, S.C. Wang, Y.H. Zhao, K. Lu, Acta Mater. 50, 3425–3434 (2002)

    Article  Google Scholar 

  34. P. Kumarn, P. Sharma, A.G. Joshi, R. Shrivastav, S. Dass, V.R. Satsangi, J. Electrochem. Soc. 159, 685 (2012)

    Article  Google Scholar 

  35. Q. Zhang, L. Huiqiao, M. Ying, Z. Tianyou, Prog. Mater Sci. 83, 472–535 (2016)

    Article  Google Scholar 

  36. K.R. Gbashi, A.A. Najim, M.A. Muhi, A.T. Salih, Plasmonics 14(3), 623–630 (2019)

    Article  Google Scholar 

  37. K. Usha, R. Sivakumar, C. Sanjeeviraja, J. Appl. Phys. 114(12), 123501 (2013)

    Article  ADS  Google Scholar 

  38. I.S. Yahia, A.A.M. Farag, M. Cavas, F. Yakuphanoglu, Superlattices Microstruct. 53, 63–75 (2013)

    Article  ADS  Google Scholar 

  39. P. Yang, M. Lu, D. Xu, D. Yuan, G. Zhou, J. Lumin. 93, 101–105 (2001)

    Article  Google Scholar 

  40. S. Muruganandam, G. Anbalagan, G. Murugadoss, Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 89(8), 835–843 (2015)

    Google Scholar 

  41. C. Barglik-Chory, C. Remenyi, C. Dem, M. Schmitt, W. Kiefer, C. Gould, C. Rüster, G. Schmidt, D.M. Hofmann, D. Pfisterer, G. Müller, Phys. Chem. Chem. Phys. 5(8), 1639–1643 (2003)

    Article  Google Scholar 

  42. S. Muruganandam, G. Anbalagan, G. Murugadoss, Optik 131, 826–837 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the University of technology, Iraq and the authors thank all staff of the nanotechnology research center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadhim R. Gbashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gbashi, K.R., Muhi, M.A.H., Jabbar, A.A. et al. Copper dopants impact enhanced behavior of Mn:Cu co-doped CdS nanocrystals (quantum dots) and their characteristics for optoelectronic applications. Appl. Phys. A 126, 628 (2020). https://doi.org/10.1007/s00339-020-03801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03801-1

Keywords

Navigation