Studies on micron-sized Na0.7MnO2.05 with excellent cycling performance as a cathode material for aqueous rechargeable sodium-ion batteries

Abstract

Aqueous rechargeable sodium-ion batteries (ARSB) have great potential as large-scale storage devices owing to their low cost, high energy density, safety, and environmental friendliness. Here, micron-sized Na0.7MnO2.05, fabricated by a facile sol–gel method, is reported as a novel cathode material for ARSB and has been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction/energy dispersive spectroscopy (ED/EDS) and X-ray photoelectron spectroscopy (XPS). As revealed, the material is perfectly synthesized. The Na0.7MnO2.05 electrode delivers an initial charge specific capacity of 42.6 mA h g−1 at a current density of 50 mA g−1. Compared with the capacity of 100th cycle (the highest discharge specific capacity of 52 mA h g−1), a capacity retention of 90.1% after 600 cycles is still observed. Good rate performance and excellent long-term cycling capability are also demonstrated. Unique morphology, medium-sized and mono-disperse particles facilitate the diffusion of Na+ in the electrode, which is also beneficial for Na0.7MnO2.05 electrode to exhibit excellent electrochemical performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017)

    ADS  Article  Google Scholar 

  2. 2.

    D. Larcher, J. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 7, 19–29 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)

    Article  Google Scholar 

  5. 5.

    J.Y. Luo, W.J. Cui, P. He, Y.Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature Chem. 2, 760–765 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014)

    Article  Google Scholar 

  7. 7.

    Y. Wang, J. Yi, Y. Xia, Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2, 830–840 (2012)

    Article  Google Scholar 

  8. 8.

    J. Huang, Z. Guo, Y. Ma, D. Bin, Y. Wang, Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes, Small Methods 1800272, (2018)

  9. 9.

    J. Liu, C. Xu, Z. Chen, S. Ni, Z.X. Shen, Progress in aqueous rechargeable batteries. Green Energy Environ. 3, 20–41 (2018)

    Article  Google Scholar 

  10. 10.

    T. Liu, X. Cheng, H. Yu, H. Zhu, N. Peng, R. Zheng, J. Zhang, M. Shui, Y. Cui, J. Shu, An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Mater. 18, 68–91 (2019)

    Article  Google Scholar 

  11. 11.

    H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943 (2016)

    Article  Google Scholar 

  12. 12.

    W. Ren, Z. Zhu, Q. An, L. Mai, Emerging prototype sodium-ion full cells with nanostructured electrode materials. Small 13, 1604181 (2017)

    Article  Google Scholar 

  13. 13.

    D. Bin, F. Wang, A.G. Tamirat, L. Suo, Y. Wang, C. Wang, Y. Xia, Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8, 1703008 (2018)

    Article  Google Scholar 

  14. 14.

    N. Ortiz-Vitoriano, N.E. Drewett, E. Gonzalo, T. Rojo, High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 10, 1051–1074 (2017)

    Article  Google Scholar 

  15. 15.

    Z. Li, D. Young, K. Xiang, W.C. Carter, Y.-M. Chiang, Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290–294 (2013)

    Article  Google Scholar 

  16. 16.

    J.F. Whitacre, A. Tevar, S. Sharma, Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 12, 463–466 (2010)

    Article  Google Scholar 

  17. 17.

    B. Zhao, B. Lin, S. Zhang, C. Deng, A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7, 18552–18560 (2015)

    ADS  Article  Google Scholar 

  18. 18.

    Y. Wang, L. Mu, J. Liu, Z. Yang, X. Yu, L. Gu, Y.-S. Hu, H. Li, X.-Q. Yang, L. Chen, X. Huang, A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5, 1501005 (2015)

    Article  Google Scholar 

  19. 19.

    Z. Hou, X. Li, J. Liang, Y. Zhu, Y. Qian, An aqueous rechargeable sodium ion battery based on a NaMnO2–NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3, 1400–1404 (2015)

    Article  Google Scholar 

  20. 20.

    T.J. Sun, X.L. Yao, Y.X. Luo, M.H. Fang, M. Shui, J. Shu, Y.L. Ren, Micron-sized Na0.7MnO2.05 as cathode materials for aqueous rechargeable magnesium-ion batteries. Ionics 25, 4805–4815 (2019)

    Article  Google Scholar 

  21. 21.

    D. Sun, G.H. Jin, Y.G. Tang, R. Zhang, X. Xue, X.B. Huang, H.L. Chu, H.Y. Wang, NaTi2(PO4)3 nanoparticles embedded in carbon matrix as long-lived anode for aqueous lithium ion battery. J. Electrochem. Soc. 163, A1388–A1393 (2016)

    Article  Google Scholar 

  22. 22.

    Y. Hou, H. Tang, B. Li, K. Chang, Z. Chang, X.-Z. Yuan, H. Wang, Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Mater. Chem. Phys. 171, 137–144 (2016)

    Article  Google Scholar 

  23. 23.

    M.F. Liu, Z.Z. Du, Y.L. Xie, X. Li, Z.B. Yan, J.M. Liu, Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7-yCa0.3+yMn1-yRuyO3 (0≤y<0.3): the role of Mn-Ru t2g super-exchange. Sci. Rep. 5, 9922 (2015)

    ADS  Article  Google Scholar 

  24. 24.

    T. Gao, P. Norby, F. Krumeich, H. Okamoto, R. Nesper, H. Fjellvåg, Synthesis and properties of layered-structured Mn5O8 nanorods. J. Phys. Chem. C 114, 922–928 (2010)

    Article  Google Scholar 

  25. 25.

    W. Qiu, Y. Li, A. You, Z. Zhang, G. Li, X. Lu, Y. Tong, High-performance flexible quasi-solid-state Zn–MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J. Mater. Chem. A 5, 14838–14846 (2017)

    Article  Google Scholar 

  26. 26.

    V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro, J. Jo, S. Kim, V. Mathew, Y.K. Sun, J. Kim, Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano. Lett. 18, 2402–2410 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    C. Deng, S. Zhang, Z. Dong, Y. Shang, 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries. Nano. Energy 4, 49–55 (2014)

    Article  Google Scholar 

  28. 28.

    D.J. Kim, R. Ponraj, A.G. Kannan, H.-W. Lee, R. Fathi, R. Ruffo, C.M. Mari, D.K. Kim, Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J. Power Sources 244, 758–763 (2013)

    Article  Google Scholar 

  29. 29.

    Y. Kong, J. Sun, L. Gai, X. Ma, J. Zhou, NaTi2(PO4)3, C||LiMn2O4 rechargeable battery operating with Li+/Na+-mixed aqueous electrolyte exhibits superior electrochemical performance. Electrochim. Acta 255, 220–229 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support for this work from 973 Fundamental research program from the ministry of science and technology of China (Grant number 2010CB635116), NSFC project 21173190, Ningbo Science and Technology Bureau Project 2017A610023, Zhejiang Provincial Natural Science Foundation of China Y13B010020 and K.C.Wong Magna Fund in Ningbo University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miao Shui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 659 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, F., Yao, X., Sun, T. et al. Studies on micron-sized Na0.7MnO2.05 with excellent cycling performance as a cathode material for aqueous rechargeable sodium-ion batteries. Appl. Phys. A 126, 658 (2020). https://doi.org/10.1007/s00339-020-03799-6

Download citation

Keywords

  • Na0.7MnO2.05
  • Aqueous rechargeable sodium batteries
  • Cathode materials